ECE663 Advanced Optimizing Compilers

Tentative Syllabus

Spring 2012 Mo/We/Fr 10:30-11:20 PM, EE 224

Instructor Prof. R. Eigenmann
Tel 49-41741

Email eigenman@purdue.edu
Office EE325

Office Hours thd

Secretary: Jill Comer, EE325b

Course Web Page: http://engineering.purdue.edu/ eigenman/ECE663/

Prerequisites: EE573 or equivalent. Substantial programming experience.

Text: Course notes and research papers will be used.

Background texts:

Michale Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley, ISBN 0-8053-2730-4.
Utpal Banerjee, Dependence Analysis, Kluwer, ISBN 0-7923-9809-2.

Ken Kennedy and John R. Allen, Optimizing Compilers for Modern Architectures: A Dependence-based
Approach, Morgan Kaufmann Publishers, ISBN 1558602860.

Cooper and Torczon, Engineering a Compiler, Morgan Kaufmann, 2004, ISBN 1-55860-698-X.

Description: This course presents the concepts needed to design and implement advanced optimizing source-
to-source preprocessors and code generators. Specific emphasis will be put on techniques for exploiting par-
allelism in multiprocessors and multicores. Each student will conduct a compiler implementation project and
present the results in class.

Objective: Students who successfully complete this course will have demonstrated that they can:

e Explain the various passes of an optimizing compiler; including program analysis, dependence analysis,
enabling transformations, loop restructuring, and instruction level parallelization.

e Describe implementation methods and performance characteristics of these passes and tasks.

e Explain program analysis techniques used to decide on correctness and profitability of the program
transformations.

e Explain research issues related to these techniques, including known solutions, differences between al-
ternative solutions, and open issues.

e Implement an optimizing compiler pass in the context of a realistic compiler.

Course Grading:
Tests 50%. (20% midterm, 30% final exam)

Participation in class 10%.
Class Presentation 10%.
Projects 30%

Regrading policy: any information that you feel will affect your grade, including grade disputes and emergencies
that prevent you from attending class, must be sent by email to the instructor within a week from the event.
In general, the instructor will not respond to these notes or change your intermediate grades. However, the
information will be factored into your final class grade.

Course schedule:

45 lectures (eff. 15 weeks) plus final exam

week
Monday Jan 9 Sem starts MWF 1
16 WF 2 Jan 16: M.L. King Day, no lecture
23 MWF 3 Jan 23: draft project proposal due
30 MWF 4 Jan 30: final project proposal due
Feb 6 MWF 5
13 MWF 6
20 MWF 7
27 MWF 8 Feb 29 Midterm exam
Mar 5 MWF 9 Mar 5: first project report due
12 Spring break
19 MWF 10
25 MWF 11
Apr 2 MWF 12
9 MWF 13
16 MWF 14
23 MWF 15 Apr 29: final project report due
30 final exams week Final exam date: TBD
Tentative Course Outline:
Topic #weeks
1. | Introduction and Motivation 1
2. | Effectiveness of parallelizing compilers 1
3. | Basic Transformations 2
4. | Program Analysis I 1
5. | Advanced Loop Optimizations 1
7. | Program Analysis II 2
8. | Performance of Compiler Techniques 1
9. | Optimizations for Accelerators 2
10. | Class Presentations 3

Exams: There will be a midterm and a final exam. The midterm exam covers the material approximately
through “Parallelism Enabling Techniques”. Specifics will be posted on the course web page. The final exams
is comprehensive. All exams are “open textbook and notes.” However it is strongly recommended that you
page through the textbook and notes as little as possible during the exam. Searching in your notes can slow
you down significantly. Use the textbook only in “emergencies”.

Class Projects: Each student will propose and implement a compiler pass or an infrastructure module
within the Cetus compiler infrastructure. Exceptions are possible, but need instructor approval. Additional
project details will be presented in the first week of class. The projects may be implemented in groups of up
to 2 students.

A draft and final project proposal as well as an intermediate and final project report is to be submitted by
email, in PDF format, to the instructor as per the class schedule, before the end of the indicated day. The
project proposal should include: A description of the project to be done; a clear description of the outcomes
and deliverables you expect to have at the end of the project; and a timeline, indicating when you expect
to have completed what part of the project (3-4 milestones during the semester). The final (intermediate)
project report is approximately 10 (5) pages, excluding code, 11pt font, double spaced. The front page of each
report must include the project title, student name(s) and email address(es), course number (ECE663), and
whether it is the draft proposal, final proposal, intermediate, or final project report.

