Automatic Array Privatization *

Peng Tu and David Padua

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign

Abstract. Array privatization is one of the most effective transforma-
tions for the exploitation of parallelism. In this paper, we present a tech-
nique for automatic array privatization. Our algorithm uses data flow
analysis of array references to identify privatizable arrays intraprocedu-
rally as well as interprocedurally. It employs static and dynamic reso-
lution to determine the last value of a lived private array. We compare
the result of automatic array privatization with that of manual array
privatization and identify directions for future improvement. To enhance
the effectiveness of our algorithm, we develop a goal directly technique
to analysis symbolic variables in the present of conditional statements,
loops and index arrays.

1 Introduction

Enhancing parallelism, balancing load and reducing communication is among
the major tasks of today’s parallelizing compilers. Memory-related dependence
can severely limit the potential parallelism of a program. Privatization is a tech-
nique that allows each concurrent thread to allocate a variable in its private
storage such that each thread accesses a distinct instance of the variable. By
providing a distinct instance of a variable to each processor, privatization can
eliminate memory related dependence. Previous studies on the effectiveness of
automatic program parallelization show that privatization is one of the most
effective transformations for the exploitation of parallelism [8]. A related tech-
nique called ezpansion [13] transforms each reference to a particular scalar into a
reference to a vector element in such a way that each thread accesses a different
vector element. When applied to an array, expansion creates a new dimension
for the array.

Because the access to a private variable is inherently local, privatization
reduces the communication and facilitates data distribution. Since private in-
stances of a variable are spread among all the active processors, privatization
provides opportunities to spread computation among the processors and improve

load balancing [16].

* The research described was supported by Army contract DABT63-92-C-0033 and
CSRD affiliate program from Motorola Corporation. This work is not necessarily
representative of the positions or policies of the Army or the Government.

Previous work on eliminating memory-related dependence focused on scalar
expansion [19], scalar privatization [3], scalar renaming [6], and array expan-
sion [13] [9]. Recently there have been several papers on array privatization
[11][12][16].

We present an algorithm for automatically generating an annotated parallel
program from a sequential program represented by a control flow graph. In the
target parallel program, each loop is annotated with its privatizable arrays and
their last value assignment conditions. The algorithm has been implemented in
the POLARIS parallelizing compiler. Our work on automatic array privatization
presents the following new results:

— We use data flow-based analysis for array reference. Compared with the
dependence analysis-based approach [12], which has to employ parametric
integer programming in its most general case, our approach is more effi-
cient and can handle nonlinear subscripts that cannot be handled by integer
programming.

— The algorithm proceeds from the bottom up, which allows us to easily ex-
tend the algorithm to program call trees for interprocedural analysis. Our
experience shows this interprocedural array reference analysis is necessary
in many cases for successful array privatization in real applications.

— We distinguish private arrays whose last value assignments can be deter-
mined statically from those whose last values have to be assigned dynami-
cally at runtime. This work can potentially identify more private arrays than
other algorithms can identify.

— To evaluate its effectiveness, we test the algorithm on the programs in the
Perfect Benchmarks. We compare the automatic privatization with man-
ual privatization described in a previous study[8]. We find that for further
improvement, more sophisticated symbolic analysis techniques are needed.

— To facilitate further improvement, we develop a goal-directed technique to
analyze symbolic variables in the present of conditional statements, loops,
and index arrays.

The rest of the paper is organized as follows. Section 2 is an overview of
the issues in automatic array privatization and gives an example that motivates
this work. Section 3 presents the algorithm. The algorithm is divided into two
parts: private array identification and last-value assignment resolution. Section
4 contains the experiments of automatic privatization of the Perfect Benchmarks
and presents a comparison of automatic privatization with manual privatization.
Section 5 presents a goal-directed technique that uses the SSA form of a program
to determine symbolic values in the presence of conditional statements, loops,
and index arrays. Section 6 presents the conclusion.

2 Background

Data dependence [2] specifies the precedence constraints in the execution of
statements in a program due to data producer and consumer relationships. Anti-

dependence and output dependence are memory-related or false dependence be-
cause they are not caused by the flow of values from one statement to another,
but by the reuse of memory locations. Consider the loop:

Si1: DOI =1, N

S2: A(1) = X(I,J)

S3: DOJ =2, N

S4: A(T) = A(I-1)+Y(D)

S5: ENDDO

S6: DOK =1, N

ST7: B(I,K) = B(I,K) + A(K)
S8: ENDDO

S9: ENDDO

Because every iteration of loop S17 accesses the same elements of array A, loop
S1 cannot be executed in parallel. However, there is no flow of value across
iterations. The conflict can be resolved by declaring A to be private to each
iteration of loop S1. We add the following directives to the loop:

C$DIR INDEPENDENT
C$DIR PRIVATE A(1:N)
C$DIR LAST VALUE A(1:N) WHEN (I.EQ.N)

The INDEPENDENT directive is borrowed from HPF [10]. It specifies that the
iterations of loop S1 are independent. There are two directives for a private array.
The PRIVATE directive associates the privatizable arrays with each iteration of
a loop. The LAST VALUE statement specifies the conditions when a processor
should copy its private array value to the global array. The interpretation of the
directives is as follows:

— Each processor cooperating in the execution of the loop allocates the private
arrays in its local storage before executing any statement in the loop.

— During the entire execution of an iteration, references to a private array are
directed to the processor’s local instance.

— After the execution of an iteration has completed, the processor checks the
last-value assignment condition. If the condition is satisfied, the processor
copies the private array to the corresponding global array. This operation is
called copy-out.

The results of our research on manual array privatization of Perfect Bench-
marks didn’t provide any case where a privatizable array needs both a local value
and a global value. Hence our model does not have copy-in, that is, we do not
allow values to be copied from the global array to the private array. Under this
assumption, our definition of privatizable array is as follows.

Definition1l. Let A be an array that is referenced in a loop L. We say A is
privatizable to L if the following conditions are satisfied.

1. Every fetch to an element of A in L must be preceded by a store to the
element in the same iteration of L.
2. Different iterations of L may access the same location of A. a

The conditions for copying out the value of a private array to a global array
are also determined by the compiler. In simple cases such as the one above, the
algorithm can find a closed form for the condition. We call these cases static
last-value assignment. In the more complicated cases, such as in the following
loop, the last-value assignment has to be determined at run time:

C$DIR INDEPENDENT

C$DIR PRIVATE A(1:N)

C$DIR LAST VALUE A(1) WHEN (I.EQ.N)
C$DIR LAST VALUE A(2:N) WHEN DYNAMIC
Si: DOI=1, 1N

S2: A(1) = X(I,7)

S3: IF (4(1).GT.0) THEN

S4: DOJ =2, N

S5: ACT) = A(J-1)+Y(J)
S6: ENDDO

S7: ENDIF

S8: ENDDO

In this example, the array section A(2:N) is conditionally assigned. A is still
privatizable because it satisfies the privatizability conditions, but its last-value
assignment cannot be determined at compile time. We use the key word DY-
NAMIC to specify that run-time resolution techniques such as synchronization
variable [20] will have to be used for the array section A(2:N). These cases
are termed dynamic last-value assignment. For instance, the compiler can asso-
ciate the subarray A(2:N) with a synchronization variable last-iteration, which
stores the last iteration that was written to A(2:N). Every iteration that defines
A(2:N) will atomically compare its iteration number with the last iteration. If
its iteration number is larger than the last iteration, the processor stores its
iteration number into the last-iteration variable and copy-out A(2:N). Other-
wise, the assignment is ignored, because a later iteration has already written
to A(2:N). Note that because all the iterations are independent, the number of
copy-out operations can be reduced by scheduling the loop backward from the
last iteration to the first iteration.

3 Algorithm for Array Privatization

We consider the problem of identifying privatizable arrays in a data flow frame-
work. From this point of view, to determine if an array is privatizable in a loop
is to determine whether all its reaching definitions are coming from the same
iteration of the loop.

3.1 Data Flow Framework

Problem Formulation. Data flow analysis examines the flow of values through
a program and solves data flow problems by propagating information along the
paths of a control flow graph. Because private arrays are associated with DO
loops in the program, we must extend the traditional program flow graph with
information about the scope of do loops.

Definition2. G = (N, E,s) be a program flow graph where N are nodes, E
are arcs, and s € N 1is the initial node. Let L be a subflowgraph corresponding
to a do loop (including all loops nested within it). We define as control(L) C L
the subset of nodes in L corresponding to the loop entry, increment and test of
the loop index. control(L) identifies the loop index, its limits and its step. We
define the body(L) as L — control(L). |

When a program has nested loops, the control and body of the inner loop are
included in the loop body of the outer loop. When the control flow of an inner
loop is not important for the analysis of an outer loop, we can use abstraction
for the inner loop and simplify the flowgraph by collapsing the subflowgraph
corresponding to the inner loop into one node.

Definition3. Let G = (N, E,s) be a flow graph and L be a do loop in G.
The COLLAP(G, L) is a flow graph with the subflowgraph L collapsed into one
node. a

Given a subflowgraph L corresponding to a loop, we want to determine if for
every iteration of the loop, all reaching definitions to an array use come from the
same iteration. We can do this through def-use analysis. The data values to be
analyzed include both scalar values and array values. They are scalar variable,
subscripted variable, and subarray. A subscripted variable consists of an array
identifier and a list of subscript expressions. It is a special case of scalar variables.
A subarray consists of a subscripted variable and one or more ranges for some
of the indices in the subscript expression. A range includes expressions for the
lower bound, upper bound, and stride. The notion of subarray we use in this
paper is an extension at the regular section used by others[4]. Using subarray,
we can represent the triangular region and banded region, as well as the strip,
grid, column, row, and block of an array. For instance, the following examples
respectively represent a dense upper triangle, grids in the upper triangle, and
diagonal of array A.

(A(I,I:N),[I=1:N1)
(A(I,I:N:2),[I=1:N:2]1)
(A(1,1),[1=1:1])

A range in a subarray is interpreted as a FORALL, (A(I,I:N),[I=1:N]) is in-
terpreted as FORALL (I=1:N) A(I,I:N).Here the FORALL is just an assertion,
no operational constraint, such as the order of assignment to different elements,
is imposed.

We now describe the algorithm to do def-use analysis involving arrays. We
start by computing outward ezposed definitions and uses for each basic block S in
the loop body. A definition of variable v in a basic block S is said to be outward
exposed if it is the last definition of v in S. A use of v is outward exposed if S
does not contain a definition of v before this use [22].

Definition4. Let S be a basic block and VAR be the set of scalar variables,
subscripted variables, and subarrays in the program. Henceforth these are called
variables.

1. DEF(S) :={v € VAR : v has an outward exposed definition in S }
2. USE(S) := {v € VAR : v has an outward exposed use in S }
3. KILL(S) :={v € VAR : v has a definition in S } O

For the flow information of a basic block S, we define M RD;,(S) as the set
of variables that are always defined upon entering S, M RDyy;(S) as the set
of variables that are always defined upon exiting S. Let pred(S) be the set of
immediate predecessors of S in the loop’s flow graph ignoring all the back edges,
M RDin(S) can be computed using the following equations:

MRDin(S) = mtEpred(S)MRDout(t) (1)

M RDoyi(S) = (MRDiy(S) — KILL(S)) U DEF(S) (2)

We start from a conservative initial solution, with each M RDj, an empty set ¢.
The back edges in the graph are removed because M RD(S) is only concerned
with the values that are defined in the statements prior to S in the flow graph.
Because back edges are deleted, the algorithm actually works on the DAG of
the flow graph. Since back edges for inner loops do carry information for the
analysis of the outer loop, they are handled by abstraction and aggregation in
the next section.

The value of each set defined above such as DEF, USE, KILL, and MRD,
is a subset of VAR. Hence the domain of the data flow information set is the
powerset P(VAR). The effect of a U (union) operation is to form a union of its
operands. It is precise in the sense that it will not summarize two sets unless
the summary set has exactly the same members as the two sets. For instance,
{&(T) UA(1 : W)} will return {A(I),A(1: N)} unless I € [1:N], but {A(1 : N :
2)UA(2 : ¥ —1: 2)} will return A(1:N). The effect of a N (join) operation
is to form a join of its operands. It is conservative in the sense it will return
an empty set ¢ if it cannot determine the join of its operands. For instance,
{&(I)NA(1 : W)} will return ¢ unless I € [1: N]. Because the join is conservative,
there will be some potential loss of information at each join point of the flow
graph. The effectiveness of the algorithm will hence depend on the system’s
ability to determine the relationship between symbolic variables. This issue will
be discussed in Sec. 4.

An iterative algorithm for solving the M RD equation is shown in Fig. 1 as
phases 1 and 2. Phases 3 and 4 are explained below.

Algorithm Privatize
privatize := func(L)
Input: flowgraph for loop L with back edges removed
Output: DEF(L),USE(L), PRI(L)

Phase 1: Collect local information
foreach statement S € body(L) in rPostorder do
if S € control(M) for some loop M nested in L then
'S is in an inner loop, visit M first
[DEF(S),USE(S)] — privatize(M)
! collapse all nodes in M onto S
L — COLLAP(L, M)
else
compute local DEF(S),USE(S)
endif
endfor

Phase 2: Solve the MRD Data Flow Fquations for each statement
forall S € body(L) initialize M RD(S) — ¢
foreach S € body(L) in rPostorder do
MRDln(S) = mtEpred(S)]\J]%Dout (t)
MRDoyi(S) — (MRDi,(S) — KILL(S)) UDEF(S)

end

Phase 3: Compute Summary Sets for the Loop Body
DEFb(L) = mtEexits(body(L))(MRDout(t))
USEb(L) — Utebody(L)(USE(t) — MRDin(t))
PRIL(L) — (Utepoay)USE(t)) — USEL(L)
PRIF(L) — DEFy(L) N PRI, (L)

PRI (L) — PRI, (L) — PRIZ(L)

Phase 4: Return aggregated set DEF(L) and USE(L)
test if it is profitable to privatize PRI,(L)
determine last value assignment
[PRI®'(L), PRIY(L)] «— aggregate(PRI, PRISY, control(L))
[DEF(L),USE(L)] — aggregate(DEFy (L), USEy(L), control(L))
return [DEF(L),USE(L)]

Figure 1. Algorithm for Identifying Privatizable Arrays

Abstraction for Inner Loop. When the algorithm finds a loop nested inside a
loop body, it will recursively call itself on the inner loop. To hide the control flow
of an inner loop, we introduce some abstraction and extend the previous defini-
tion from a basic block to a complete loop. We start by defining the information
for one iteration of the loop.

Definition5. Let L be a loop and VAR be the variables in the program. We
define the following set as summary set for body(L).

1. DEF,(L) :={v € VAR : v has a M RD reaching all exits node of body(L) }

2. USEy(L) :=={v € VAR : v has an outward exposed use in body(L) }

3. KILLy(L) := DEFy(L)

4. PRIy (L) := {v € VAR : every use of v has a reaching M RD in body(L) }
O

The summary set is an abstraction of the effect of a loop iteration on the
data flow values. Using the summary set, we can ignore the structure of the inner
loops in the analysis of the outer loop. The trade-off is that we have to make a
conservative approximation and may lose information in the process.

— DEFy(L) is the must define variables for one iteration of L; i.e. the must
define variables upon exiting the iteration:

DEF,(L) = N(MRDyy(t) : t € ewits(L)) (3)

— USEW(L), the possibly outward exposed use variables, is the set of variables
that are used in some statements of L, but do not have an M RDy, in the
same iteration:

USEw(L) = UUSE(t) — MRDyy(t)) : t € body(L) (4)

— The privatizable variables are the variables that are used and not exposed to
definitions outside the iteration:

PRIy(L) = UW{USE() : t € body(L)} — USEy(L) (5)

In the analysis of the outer loop, we must consider the total effect of an inner
loop on data flow values. That is, we need to account for the effect of back
edges and index domain of the loop. We can do this by listing the summary set
for each iteration of the loop. We will use an approximation called aggregated
set to compute DEF (L), USE(L), KILL(L), and PRI(L). The aggregation
computes the region spanned by each array reference in USEy(L), DEFy(L),
KILLy, and PRI, (L) across the iteration space. Because we only consider do
loops, the aggregation is a relatively straightforward interpretation of loop index
and boundaries in the do-entry of the loop. In our representation of variables,
a subarray is represented as a subscripted variable together with a subscript
range. To aggregate a subarray, we just need to concatenate the loop index
and boundaries with the subscripted variable of subarray. For instance, if I is
a loop index or an induction variable with value [1:N:1], then A(I,J) will be
aggregated as (A(I,J),[I=1:N]) = A(1:N,J) and A(I,1:I) will be aggregated
as (A(I,1:1I),[I=1:N]1).

Because one iteration’s use may only be exposed to the definitions in some
previous iterations of the same loop, a naive aggregation of USEy(L) may exag-
gerate the exposed use set. The reason is that the uses covered by the definitions
in previous iterations are not exposed to the outside of the loop, and therefore
they should be excluded from the aggregated USE(L) set. For instance, in

DOI =2, N
S1: A(I) = A(I-1) + B(J)
ENDDO

the information for one iteration is USFy (L) = {A(I—1),B(J),J}and DEFL(L) =
{4(1)}, the region aggregately defined in all iterations prior to the ith iteration
is A(2:I-1), and A(I-1) is exposed to definitions outside the loop only in the
first iteration, that is, USE(L) = {4(1)}.

Profitability of Privatization. After an array is identified as privatizable in
a loop, we need to determine if different iterations of a loop will access the same
location of the array. For instance, in the following loop:

Si: DOI =1, N

S2: ACI) = ...
S3: .. = AD)
S4: ENDDO

the algorithm will identify that A(T) is privatizable. We can privatize A(I) using
a private scalar as follows:

C$DIR INDEPENDENT

C$DIR PRIVATE X

C$DIR LAST VALUE A(I) = X
Si: DOI =1, N

S2: X = ...
S3: ... =X
Sn: ENDDO

This transformation is useful for conventional compiler optimization. Today’s
optimizing compilers usually will not allocate a register to a subscripted vari-
able A(I) in the original program because they have very limited capability to
disambiguitize the array reference. In the transformed program, it is easy for
them to allocate a register to a scalar X. The transformation can also reduce the
amount of false sharing in multiprocessor caches. In a distributed memory sys-
tem with owner computes rule [21][5] [14], the transformed program effectively
transfers the ownership of A(I) to iteration I; hence the processor scheduled
to execute the iteration I can execute operations in S2 even if it does not own
A(I). This transformation can facilitate data distribution to reduce communi-
cation and improve load balance [16].

For the purpose of eliminating memory-related dependence in this paper, the
array A in the previous example need not be privatized. The condition for pri-
vatization exists when different iterations of the loop access same location. This
can be determined by examining PRI,(L). We will call the test the profitability
test. Let A(r) be a reference to array A where r is a subscript expression if A(r)
is a subscripted variable, or a range list if A(r) is a subarray.

If A(r) is a subscripted variable and r is a monotonic function of loop index
i, then different iterations of ¢ will access different locations of A(7); hence it is

not profitable to privatize A(r), otherwise it is profitable. When there is more
than one subscript of A in PRI, (L), we need to test if there is dependence
between each pair of subscripted variables. We can use the Banerjee Test [2]
to determine if within the loop boundaries two references referred to the same
location. If A(r) is a subarray, we need to determine if there is an iteration j # i
such that A(r) N A(r[i/j]) # ¢, where r[i/j] represents r after we substitute
each appearance of loop index 7 with j. Again one has to test for each pair of
occurrences if there is more than one occurrence of subarrays. This discussion is
summarized in the algorithm shown in Fig. 2.

Algorithm Profitability Test
Input: PRIy for loop L: with index 1 € [p: ¢ :]
Qutput: PRO, arrays profitable for privatization

PRO «— ¢
foreach A € PRI do
ALL A — {A(r) : A(r) € PRI}
foreach pair A(z), A(y) € ALLs — where z and y can be the same
let X — set of values in z
let Y «— set of values in y
(3 €lp:q:dli#4, X[/NY #6)
PRO +— PRO+ A
!Notice that if z = y and z does not contain 2, the test is satisfied.
endfor
endfor

Figure 2. Profitability Test

3.2 Last Value Assignment

Live Analysis. Live analysis is needed to determine if a privatizable variable
is live after exiting the loop. If it is live, the last-value assignment will be neces-
sary to preserve the semantics of the original program; otherwise no last-value
assignment is needed for that variable. A last-value assignment statement can be
ignored when the private array is not used after the loop, or there are subsequent
definitions of the array before any use.

Definition6. Let S be a node in the flowgraph. The live variables at the bottom
of S are the set of variables that may be used after control passes the bottom of

S. We define

1. LVBOT(S) :={v € VAR : v may be used after S }
2. LVTOP(S) :={v € VAR : v may be used after S orin S } O

Let suce(S) be the set of immediate successors of S in the program flowgraph.
The equations for LVTOP, LV BOT are

LVBOT(S) = UtEsucc(S)LVTOP(t) (6)
LVTOP(t) = (LVBOT(S) — I(ILL(S)) U USE(S) (7)

The algorithm traverses the flow graph backward and uses the aggregated set
for each loop. This algorithm is just the natural extension of scalar live analysis
to include array references.

Static and Dynamic Last-Value Assignment. After live analysis, we can
ignore the last-value assignments for private arrays that are not live at the bot-
tom of the loop. However, the remaining live private arrays have to be copied to
their global counterparts. Two problems prevent static determination of iteration
that copies its private array to the global array. One, as shown in our early ex-
ample, is due to conditional definition. Without information about which branch
the program will take at runtime, it is impossible to determine which iteration
shall assign the last value. Another problem is that some complicated subscript
expressions make it inefficient to compute at compile time which iteration will
assign the last value. In these cases, we will use well-known run-time techniques
such as [20] to resolve the output dependence.

Our first step is to identify the private arrays that need dynamic last-value
assignments because of conditional definition. PRI, contains all the array uses
that are covered by some definition in the same iteration of the loop; some of
the uses are conditional, where they are covered by some conditional definition.
DFEFy, contains all the variables that must be defined in every iteration of the
loop. Therefore, PRI;* = PRI, N DEF}, contains the privatizable arrays that
are unconditionally defined. Hence PRIgy = PRI, — PRI contains the condi-
tionally defined privatizable arrays.

Because of the profitability test, at least one element of the array in PRI
is defined in several iterations. To determine for each iteration what element has
to be copied back to the global array, we define a write back set as the sections
of private array that have to be copied back to the global array for iteration i.

Definition 7. Let L be a loop body and PRI*® be the static private arrays. The
Write Back Set (W BS) of L for iteration ¢ is defined as the sections of arrays in
PRI® that are written in the jth iteration, but are not written thereafter. O

From the definition we can compute the W BS by comparing the set defined
in iteration ¢ and the set defined in the iterations after i. The algorithm is shown
in Fig. 3.

Note that the last iteration of loop L will always write back all its static
private arrays. When we cannot find a closed form for W BS, we can move the
array to PRI{D1y and use run-time resolution. Actually the algorithm itself can be
linked into the program to perform a run test for each iteration. In most cases,
the algorithm will find a closed form and therefore W BS can be determined at

Algorithm Write Back Set
Input: PRI} for loop L: with index 1 € [p: ¢ : 1]
Qutput: W BS, for iteration g

WBS «— ¢
foreach array A € PRI do
ALL4 — {A(r) : A(r) € PRI}
WBS «— ALL 4 — U]‘E[i+t;q:t]ALLA[i/j]

endfor

Figure 3. Compute Write Back Set

compile time. The following example shows how the algorithm in Fig. 3 works
in two different situations.

Si: DOI=1, 1N

S2: DOJ =1, M
S3: ACT) = ...
S4: B(I+J) = ...
S5: ENDDO

Sn: ENDDO

For loop S1, PRIF* = {A(1 : M),B(I + 1 : I+ M)}. A(1:M) will be accessed
in all iterations after a given I<N because A(1:M) does not depend on I. Hence
WBS for A in iteration I # N is ¢, the empty set. Only the last iteration of
loop S1 will copy out A(1:M). For B, B(I+1:I+M) is in ALLp for iteration I,
B((I+1)+1:M+N) is modified in iterations from I+1 to N, hence the W SB for B
is B(I+1).

3.3 Interprocedural Analysis of Privatizable Arrays

In many cases, we need to do interprocedural analysis for array privatization.
We can find more deeply nested loops by looking at the loops in the subroutines.
To use the algorithm for interprocedural analysis, we generalize the loop flow
graph to incorporate subroutine bodies.

Definition8. Let R be a subroutine and VAR be the variables in the subrou-
tine. We define the subroutine summary set for R as follows:

1. DEF(R) :={v € VAR : v has a M RD reaching all exits node of R }
2. USE(R) :={v € VAR : v has an outward exposed use in R }
3. KILL(R) := DEF(R) O

The algorithm to find the subroutine summary set is the same used above
to compute DEFy,,USEy, and KILLy. The input to the algorithm is now the
flowgraph of the subroutine. We run the algorithm in bottom-up order on the
program call tree, such that each time we encounter a subroutine call in a pro-
gram, the summary set for the subroutine has already been computed. When the
algorithm finds a subroutine call node, it reads the summary set of the subrou-
tine, simplifies the summary set to get rid of variables that are not visible to the
caller, and maps the formal parameters and common variables in the summary
set to the corresponding actual parameters and common variables at the caller.
Because array reshaping usually occurs in programs written in FORTRAN, the
array defined in the subroutine may have a different shape. Our interprocedural
mapping program will linearize an array in the subroutine if it has a different
number of dimensions as in the caller. After the specialization, the algorithm
will use the subroutine summary set for the call statement.

We implemented the algorithm with interprocedural analysis in the PO-
LARIS system. It allows us to do automatic array privatization in loops with
subroutine calls.

4 Automatic versus Manual Array Privatization

To evaluate the effectiveness of the algorithm, we ran the automatic array priva-
tization on the Perfect Benchmarks. We compared the number of private arrays
found by the algorithm with that of the manual array privatization reported in
[8]. The result is shown in Table 1. The first column reports the number of pri-
vate arrays identified by both manual and automatic privatization. The second
column reports the number of private arrays identified by manual privatization
but not by automatic privatization. The third column reports the number iden-
tified by automatic privatization but not by manual privatization. By comparing

Table 1. Number of Private Arrays

Automatic| Manual| Automatic
Program and Manual| Only Only
ADM (AP) 2 12 0
ARC2D (SR) 0 2 0
BNDA (NA) 12 3 4
DYFESM (SD) 0 1 11
FLO52 (TF) 0 0 4
MDG (LW) 17 1 1
MG3D (SM) 1 4 0
OCEAN (0C) 4 3 0
QCD (LG) 22 7 0
SPECT7 (WS) 25 14 0
TRACK (MT) 20 0
TRFD (T1) 4 0 0

the results of automatic privatization and manual privatization, we found that
the algorithm is sufficient to discover most of the privatizable arrays. The lattice
for array references is also adequate for representing the array use and definition
in the programs of Perfect Benchmarks. Where our algorithm failed, we found
that in most instance it is due to lack of information about symbolic variables.
Some of the ambiguities can be resolved by a more powerful forward substitution
algorithm than that available in our current system. For instance, our algorithm
failed to identify private array XE in subroutine solvhe of DYFESM. In this case,
XE is defined in the geteu subroutine as a two-dimensional array XE(NDDF, NNPED)
and used in solvhe as a one dimensional array XE(NDFE). It turns out that NDFE
= NDDF#*NNPED after interprocedural forward substitution.

Some of the ambiguities can be resolved by enhancing the traditional scalar
constant propagation and forward substitution. For instance, a common difficulty
is conditionally defined loop boundaries. Such a situation occurs in subroutine
wnitia of ARC2D code. Two common variables JLOW and JUP are defined as
follows:

IF (.NOT.PERIDC) THEN

JLOW = 2

JUP = JMAX - 1
ELSE

JLOW = 1

JUP = JMAX
ENDIF

These two common variables are then used in subroutine filerz, filery as loop
boundaries:

L1: DON =1, 4
L2: DO J = JLOW, JUP
DO K = KLOW, KUP
WORK(J,K,1) = ...
ENDDO
ENDDO
IF (.NOT.PERDIC) THEN
L3: DO K = KLOW, KUP
WORK(1,K,1) = WORK(2,K,1) +
WORK (JMAX,K,1) = WORK(JMAX-1,K,1)
ENDDO
ENDIF

n -

ENDDO

For the array WORK to be privatized in loop L1, we need to determine the reference
WORK(2,K,1) and WORK(JMAX-1,K,1) in loop L3 are defined in L2. If we inspect
the condition in the IF statement, we can determine that when L3 is executed the
condition is (.NOT.PERDIC). Under the same condition, JLOW=2, JUP=JMAX-1;

hence the use is covered by the definition in L2. A simpler method is to propagate
the upper bound of JLOW=2 and lower bound of JUP=JMAX-1, and we do not need
to interpret the condition of IF statement.

A problem of similar nature happens in BDNA. It involves the bound of an
induction variable L:

Li: DO I = 2, NSP

L2: poJ=1, I-1
XDT(J) = ...
ENDDO
L=20
L3: poJ=1, I-1
IF (IND(J).NE.O) THEN
L = L+1
ENDIF
ENDDO
L4: DoJ=1,L
= XDT(J)
ENDDO
ENDDO

For XDT to be private to loop L1, the use in L4 must be covered by definition
in L2, i.e., we need to know if L<=I-1. Computing the upper bound for L in loop
L3, the validity of this condition in L4 can be confirmed.

The idea of keeping more than one possible value for scalars can be gener-
alized to propagate the value for each element of an array. This is very useful
in the case of subscripted subscripts. For instance, in ARC2D, array JPLUS and
JMINU are used to store the neighboring element on a ring of size JMAX. That is,
JPLUS(I) = I+1 mod JMAX, and JMINU(I) = I-1 mod JMAX. These values are
used throughout the program. By propagating the value of the whole array, we
can use our algorithm to compute the range defined and used.

Another interesting case arises in MDG, where we must inspect the condition
of an IF statement to determine whether the array RL can be privatized in
subroutine poteng and interf:

DO I =1, NMOL1
L2: DO J = I+1, NMOL
KC =0
DOK =1, 9
RS(K) = ...
Cil: IF (RS(K).GT.CUT2) THEN
KC = KC + 1
ENDIF
ENDDO
DOK =2, 5
Cc2: IF (RS(K).LE.CUT2) THEN
RL(K+4) = ...

ENDIF

ENDDO
C3: IF (KC.EQ.0) THEN
DO K = 11, 14
. = RL(K-5)
ENDDO
ENDIF
ENDDO

ENDDO

Note that whenever (KC.EQ.0) in C3 is true, (RS(K) .LE.CUT2) must also be
true, because if (RS(K).GT.CUT2), then KC must be greater than 0 due to the
increment in C1. Hence RL(6:9) is privatizable in L2 because whenever RL(6:9)
is used, it refers to the values defined in the same iteration.

In some rare cases, user direction is needed to determine if an array is pri-
vatizable. This happens in OCEAN, where it cannot be statically determined if
the array C and CA are defined in subroutine in. The in writes to the C and CA,
but the definitions are surrounded by an error condition test. Without knowing
whether the error condition will abort the program, the algorithm has no way of
knowing those arrays are defined whenever the program returns from subroutine
mn.

5 Demand Driven Symbolic Analysis

In the last section, we showed that to determine the region of an array that is used
in a program, a major task is to determine the relationship between symbolic
variables. In this section, we present a demand-driven technique to determine
the value relationship between symbolic variables. This technique is based on
the Static Single Assignment (SSA) form. SSA is an intermediate representation
of a program that has two useful properties:

1. Each use of a variable is reached by exactly one definition to that variable.
2. The program contains PHI functions that merge the values of a variable from
a distinct incoming control-flow graph.

[1, 15, 17] present various applications of SSA, and [7] deals with efficiently
transforming programs into SSA form.

5.1 Determine Symbolic Value on Demand

The SSA form can be used to track the value of symbolic variables on de-
mand. For instance, from the following SSA representation of a piece of code in
DYFESM, we can determine that the value of NDFE_1 used in L3 is NDDF_1*NNPED_1
since NDFE_1 is assigned in S1.

S1: NDFE_1 = NDDF_1 * NNPED_1

DO K_1 =1, N_1

Li: DO I_1=1, NDDF_1
L2: DO J_1=1, NNPED_1
XE(I_1,3) = ...
END DO
END DO
L3: DO I_2 = 1,NDFE_1
... = XE(I_2)
END DO
END DO

The loop boundaries for L1,L2 are the same NDDF_1 and NNPED_1. Hence the
use of XE in L3, which is XE(1:NDFE_1)=XE(1:NDDF_1*NNPED_1), is covered by
the definition XE(1:NNDF_1,1:NNPED_1) in L1. Because in a SSA representation,
each use of a variable can be reached by exactly one assignment to that variable,
it is very easy to track the value of a variable by its name.

In the traditional forward substitution, because it is difficult to know which
variable should be forward substituted, it usually substitutes all the variables in
a program and rolls back later to avoid redundant computation. In contrast, the
backward tracking of a value through SSA variable name is done on demand.

5.2 Dealing with Conditionals

One difficulty in dealing with a conditional statement is to propagate the condi-
tion from the assignment of a variable to the use of the variable. For the example
code from ARC2D, it is difficult to know that the condition guarding the assign-
ment to JLOW_1 is the same condition guarding the use of JLOW_1. In situation
like this, the unique variable name in the SSA representation serves as a handle
to link the scattered information.

The SSA representation for the ARC2D example is as follows (we only show
in SSA form for variables involved in loop boundaries):

IF (.NOT.PERIDC) THEN

JLOW_1 = 2

JUP_1 = JMAX - 1
ELSE

JLOW_2 = 1

JUP_2 = JMAX
ENDIF

JLOW_3 = PHI(Cond(.NOT.PERIDC),JLOW_1,JLOW_2)
JUP_3 = PHI(Cond(.NOT.PERIDC),JUP_1,JUP_2)

Li: DON =1, 4
L2: DO J = JLOW_3, JUP_3

DO K = KLOW, KUP

WORK(J,K,1) = ...
ENDDO
ENDDO
S1: IF (.NOT.PERDIC) THEN
L3: DO K = KLOW, KUP

WORK(1,K,1) = WORK(2,K,1) +
WORK (JMAX,K,1) = WORK(JMAX-1,K,1)
ENDDO
ENDIF

ENDDO

Note that the PHI functions for JLOW_3 and JUP_3; it is inserted in the pro-
gram to distinguish values of a variable from different branches of the con-
trol flow graph, in this case the different branches of a conditional statement.
We use an extended PHI function to include the predicate for the conditional
statement. Cond(.NOT.PERIDC) specifies the condition in the IF statement, if
Cond (.NOT.PERIDC) is true, JLOW_3 will take the value of the second parameter
of the PHI function which is JLOW_1, if Cond(.NOT.PERIDC) is false, it will take
the value of the third parameter, JLOW_2.

We will first show how to interpret the conditional statement and then show
how to compute the upper and lower bounds for the variables. For loop L3 to
be executed, the condition (.NOT.PERDIC) must be true since L3 is control de-
pendent on the S1. Tracing the values of JLOW_3,JUP_3 to the PHI function we
know that they will have value JLOW_1, JUP_1. Tracing the value of JLOW_1, JUP_1
further, we have JLOW_3=JLOW_1=2, JUP_3=JUP_1=JMAX-1. Since now the value of
JLOW_3=2, JUP_3=JMAX-1 matches the value for the subscript of the WORK(2,K, 1)
and WORK(JMAX-1,K,1), we do not need to trace back the value for JUAX any
further. At this point we can compare the array region WORK(JLOW_3:JUP_3,
KLOW:KUP, 1) defined in loop L2, which is WORK(2:JMAX-1, KLOW:KUP, 1),
with the array regions WORK(2, KLOW:KUP, 1) and WORK(JMAX-1, KLOW:KUP,
1). The definition covers the uses, and WORK array is privatizable to loop L1.

As discussed before, in this example it is sufficient to prove WORK is privatiz-
able just by showing the lower bound of JUP_3 is greater than or equal to JMAX-1
and the upper bound of JLOW_3 is less than or equal to 2. To compute the bounds
for a variable, we can make a conservative choice at each PHI function and ignore
the predicate for the conditional statement. We start by tracing back the values
for variables until they are unified. Then we take the max or min on the second
and third parameter of a PHI function and ignore the predicate.

max (JLOW_3) = max(PHI(Cond(.NOT.PERIDC),JLOW1,JLOW_2))
= max(PHI(Cond(.NOT.PERIDC),2,1)) = max(2,1) = 2

min(JUP_3) = min(PHI(Cond(.NOT.PERIDC),JUP_1,JUP 2))
= min(PHI(Cond(.NOT.PERIDC),JMAX-1,JMAX)) = JMAX-1

In addition to being goal directed and on demand, the backward tracing scheme
can stop the tracing when the symbolic expressions in question are unified, i.e.,
when the variables in the expressions are the same. After that, the additional
unwinding of values will not gain any more information. In a forward propagation
scheme, everything must start from the most primitive variables and in the case
of several levels of conditionals, the number of branches may quickly explode
and complexity may grow out of control. Because the backward tracing is goal
directed and incremental, we can easily set complexity constraints such as the
maximum backward tracing level to a fix number of nested PHI functions. After
that, the algorithm can give up and degrade gracefully to reduce compile time.

5.3 Bounds for Monotonic Variables

The value of an induction variable or a monotonic variable depends on the
structure of the loop in which it is assigned. Induction variable’s last value can
be determined using induction variable substitution technique such as presented
in [18]. In this section, we will show a technique to estimate the bounds of
monotonic variable.

Using SSA form of loop L3 in the example from BDNA, we have:

L.1=0

L3: DO J =1, I-1

L_2 = PHI(L3,L_4,L_1)

IF (IND(J).NE.O) THEN
L3=L2+1

ENDIF

L_4=PHI(Cond(IND(J).NE.O0),L_3,L_2)

ENDDO

The original loop L4 will use L_2 as the value of L. In this example, we extend the
PHI function to include loop label L3 in it to identify the loop control. Following
the terminology used by Wolfe on induction variables[18], L_2 will appear as a
Strongly Connected Region (SCR) that includes a loop header PHI function and
some conditional PHI functions. To find the upper bounds of L_2, we need to
find the cycle with maximum increment to L_2 in the SCR. Similarly, for the
lower bound of a monotonic variable, we need to find the cycle with minimum
increment to L_2 in the SCR. This can be accomplished by backward tracing
and compute bounds on PHI function as follows:

L2 = PHI(L3,L.1,L4) = PHI(L3,PHI(Cond(IND(J).NE.O0),L3,L2),0)
= PHI(L3,PHI(Cond(IND(J).NE.0),L2+1,L.2),0)

Hence the maximum value for L_2 will be:

max(L_2)=max(PHI(L3,PHI(Cond (IND(J).NE.0),L 2+1,L 2),0))
= 0+(I-1)*max_inc(PHI(Cond(IND(J).NE.O0),L2+1,L_2))
= (I-1)#*max(0,1)=I-1

The way to handle loop PHI function is to take its trip count and multiply the trip
count to the maximum increment in the SCR. To find the maximum increment
for a loop, we will choose the branch with maximum increment in a conditional
PHI function. In the example, the monotonic variable is L_2 and its maximum
increment for each iteration is 1. Lower bound for monotonic variables can be
computed by taking a minimum function over the PHI functions.

5.4 Index Arrays

The use of the index array in the program makes it difficult to determine the
array reference region in a program. ARC2D uses an index array JPLUS. It is
assigned as follows:

Li: DO J=1, JMAX
JPLUS(J) = J+1
END DO
JPLUS (JMAX)=JMAX

L2: DO J =1, JMAX
... = ... FLUX(JPLUS(J),K,N)
END DO
We can use the SSA representation to find out the value of JPLUS(J) in loop L2.
We will extend the SSA representation to array in the following way: (1) create a
new array name for each array assignment; (2) use the subscript to identify which
element is assigned; (3) replace the assignment with a special PHI function that
will be written as MU((subscript) ,assignment,old). The assignment A(I) =
exp is converted to A_1 = MU((I), exp, A_0), which is interpreted as element
A_1(I) will take the value of exp in the assignment while other elements of A_1
will take the value in the A_0 as before the assignment. Using this extension, our
example can be transformed into the following SSA form:

Li: DO J=1, JMAX
JPLUS_2 = PHI(L1,JPLUS_1,JPLUS_O)
JPLUS_1 MU((J),J+1,JPLUS_2)
END DO
JPLUS_3 = MU((JMAX),JMAX,JPLUS_2)

L2: DO J =1, JMAX
co. = . FLUX(JPLUS_3(J),K,N)
END DO

For subscript expression JPLUS_3(J) in loop L2, it can be evaluated as follows.

JPLUS_3(J) = (MU((JMAX),JMAX,JPLUS2))(J)

(MU((JMAX) , JMAX,PHI (L1, JPLUS_1, JPLUS.0))) (J)

(MU((JMAX) , JMAX,PHI(L1,MU((J),J+1,JPLUS2),JPLUS.0)))(J)
(MU((IMAX) , JMAX,MU(([1:JMAX]),J+1,JPLUS.0))) (J)

The expression can be interpreted as

JPLUS_3(J) = IF J=JMAX THEN
JMAX
ELSEIF J in [1:JMAX] THEN
J+1
ELSE
JPLUS_0(J)
ENDIF

Note that the PHI function for loop L1 defines an aggregated region of the index
array.

6 Conclusion

We presented an algorithm to automatically identify privatizable arrays in se-
quential FORTRAN programs to eliminate memory-related dependence. The
algorithm has been implemented in the POLARIS system to perform interpro-
cedural array privatization. Our experiments have thus far indicated that the al-
gorithms can privatize most of the arrays privatized by hand in [8]. To increase
the coverage of the algorithms, it seems necessary to use more sophisticated
techniques for determining the equivalence of symbolic variables, and interpro-
cedural symbolic values and bounds propagation. To this purpose, we proposed
a goal-directed technique that uses the SSA form of a program to determine the
values and bounds of symbolic variables in the presence of conditional state-
ments, loops, and index arrays. We are currently implementing the symbolic
analysis technique and studying the application of array privatization to data
distribution for greater local access and better load balancing.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Variables in
Programs. In Proc. of the 15th ACM Symposium on Principles of Programming
Languages, pages 1-11, 1988.

2. Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, 1988.

3. M. Burke, R. Cytron, J. Ferrante, and W. Hsieh. Automatic generation of nested,
fork-join parallelism. Journal of Supercomputing, pages 71-88, 1989.

4. D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel
programming environment. Journal of Parallel and Distributed Computing, 5:517—
550, 1988.

5. D. Callahan and K. Kennedy. Compiling programs for distributed-memory multi-
processors. Journal of Supercomputing, 2:151-169, October 1988.

6. Ron Cytron and Jeanne Ferante. What’s in a Name? or The Value of Renaming for
Parallelism Detection and Storage Allocation. In Proc. 1987 International Conf.
on Parallel Processing, pages 19-27, August 1987.

7. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control de-
pendence graph. ACM Transactions on Programming Languages and Systems,
13(4):451-490, October 1991.

8. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the automatic
parallelization of four Perfect-Benchmark programs. In Proc. 4-th Workshop
on Programming Languages and Compilers for Parallel Computing. Pitman/MIT
Press, August 1991.

9. P. Feautrier. Array expansion. In Proc. 1988 ACM Int’l Conf. on Supercomputing,
July 1988.

10. High Performance Fortran Forum. High performance fortran language specifica-
tion (draft). Technical report, High Performance Fortran Forum, January 1993.

11. Zhiyuan Li. Array privatization for parallel execution of loops. In Proc. of 1CS5’°92,
pages 313-322, 1992.

12. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Data dependence and data-
flow analysis of arrays. In Proc. 5rd Workshop on Programming Languages and
Compilers for Parallel Computing, August 1992.

13. D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184-1201, December 1986.

14. A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proc. the SIGPLAN 89 Conference on Program Language Design and Implemen-
tation, June 1989.

15. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Re-
dundant Computation. In Proc. of the 15th ACM Symposium on Principles of
Programming Languages, pages 12-27, 1988.

16. Peng Tu and David Padua. Array privatization for shared and distributed mem-
ory machines. In Proc. 2nd Workshop on Languages, Compilers, and Run-Time
Environments for Distributed Memory Machines, to appear on ACM SIGPLAN
Notices 1993, September 1992.

17. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181—
210, April 1991.

18. Michael Wolfe. Beyond induction variables. ACM PLDI’92, 1992.

19. Michael Joseph Wolfe. Optimizing supercompilers for supercomputers. Techni-
cal Report UIUCDCS-R-82-1105, Department of Computer Science, University of
Illinois, October 1982.

20. Chuan-Qi Zhu and Pen-Chung Yew. A scheme to enforce data dependence on large
multiprocessor systems. IEEE Transactions on Software Engineering, 13(6):726—
739, June 1987.

21. H. Zima, H.-J. Bast, and M. Gerndt. Superb: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

22. Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-
puters. ACM Press, 1991.

This article was processed using the INTpX macro package with LLNCS style

