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I. Motivation and Introduction: 
Optimizing Compilers are in the Center of the 

(Software) Universe  
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HPC Systems 
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Resources 

They translate increasingly advanced human interfaces (programming 
languages)  onto increasingly complex target machines 
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Processors have multiple cores. Parallelization is a key optimization. 
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C, C++,  
Java,  
Fortran 

Human (programming) 
language 

Machine architecture 



Issues in Optimizing / 
Parallelizing Compilers 

The Goal: 
•  We would like to run standard (C, C++, Java, 

Fortran) programs on common parallel 
computers 

leads to the following high-level issues: 
•  How to detect parallelism? 
•  How to map parallelism onto the machine? 
•  How to create a good compiler architecture? 
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Detecting Parallelism 

•  Program analysis techniques 
•  Data dependence analysis 
•  Dependence removing techniques 
•  Parallelization in the presence of 

dependences 
•  Runtime dependence detection 
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Mapping Parallelism onto the 
Machine 

•  Exploiting parallelism at many levels  
–  Multiprocessors and multi-cores (our focus) 
–  Distributed computers (clusters or global 

networks) 
–  Heterogeneous architectures 
–  Instruction-level parallelism 
–  Vector machines 

•  Exploiting memory organizations 
–  Data placement 
–  Locality enhancement 
–  Data communication 
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Architecting a Compiler 

•  Compiler generator languages and tools 
•  Internal representations 
•  Implementing analysis and transformation 

techniques 
•  Orchestrating compiler techniques (when to 

apply which technique) 
•  Benchmarking and performance evaluation 



Parallelizing Compiler Books and 
Survey Papers 

Books: 
•  Michael Wolfe: High-Performance Compilers for Parallel Computing (1996) 
•  Utpal Banerjee: several books on Data Dependence Analysis and Transformations 
•  Ken Kennedy, John Allen: Optimizing Compilers for Modern Architectures: A 

Dependence-based Approach (2001)  
•  Zima, H. and Chapman, B., Supercompilers for parallel and vector computers (1990) 
•  Scheduling and automatic Parallelization, Darte, A., Robert Y., and Vivien, F.,  (2000) 

Survey Papers: 
•  Rudolf Eigenmann and Jay Hoeflinger, Parallelizing and Vectorizing Compilers, Wiley 

Encyclopedia of Electrical Engineering, John Wiley &Sons, Inc., 2001 
•  Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua.  Automatic 

Program Parallelization.  Proceedings of the IEEE, 81(2), February 1993. 
•  David F. Bacon, Susan L. Graham, Compiler transformations for high-performance 

computing, ACM Computing Surveys (CSUR), Volume 26, Issue 4, December 1994, 
Pages: 345 - 420,1994 
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Course Approach 
There are many schools on optimizing compilers. 

Our approach is  performance-driven. 
We will discuss: 

–  Performance of parallelization techniques 
–  Analysis and Transformation techniques in the 

Cetus compiler (for multiprocessors/cores) 
–  Additional transformations (for GPGPUs and other 

architectures) 
–  Compiler infrastructure considerations 
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The Heart of Automatic 
Parallelization 

Data Dependence Testing 

If a loop does not have data dependences 
between any two iterations then it can be 
safely executed in parallel 

In science/engineering applications, loop 
parallelism is most important. In non-
numerical programs other control structures 
are also important 
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Data Dependence Tests: 
Motivating Examples 

Statement Reordering 
can these two statements be 
swapped? 

DO i=1,100,2 
   B(2*i) = ... 
      ...    = B(3*i) 
ENDDO 

A data dependence exists between two adjacent data references iff: 
•  both references access the same storage location and 
•  at least one of them is a write access 

DD testing is important not just for 
detecting parallelism 

Loop Parallelization 
Can the iterations of this 
loop be run concurrently? 

DO i=1,100,2 
   B(2*i) = ... 
      ...    = B(2*i) +B(3*i) 
ENDDO 

DD testing is needed to detect 
parallelism 
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Data Dependence Tests:  Concepts 

Terms for data dependences between statements of loop iterations. 
•  Distance (vector): indicates how many iterations apart are source 

and sink of  dependence. 
•  Direction (vector): is basically the sign of the distance. There are 

different notations: (<,=,>) or (-1,0,+1) meaning dependence (from 
earlier to later, within the same, from later to earlier) iteration. 

•  Loop-carried (or cross-iteration) dependence and non-loop-carried 
(or loop-independent) dependence: indicates whether or not a 
dependence exists within one iteration or across iterations. 
–  For detecting parallel loops, only cross-iteration dependences matter. 
–  equal dependences are relevant for optimizations such as statement 

reordering and loop distribution. 
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Data Dependence Tests:  Concepts 
•  Iteration space graphs: the un-abstracted form of a dependence 

graph with one node per statement instance. 

 Example: 

DO i=1,n 
   DO j=1,m 
      a(i,j) = a(i-1,j-2)+b(I,j) 
   ENDDO 
ENDDO 

i 

j 

 order 
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Data Dependence Tests: 
Formulation of the  

Data-dependence problem 
DO i=1,n 
   a(4*i) = . . . 
   . . .    =  a(2*i+1) 
ENDDO 

the question to answer: 
can 4*i1 ever be equal to 2*i2+1 within i1, i2 ∈[1,n] ? 

Let us generalize a bit: given 
•  two subscript functions f and g,  and 
•  loop bounds lower, upper, 
Does  
   f(i1) = g(i2) have a solution such that  
   lower  ≤  i1, i2 ≤ upper ? 

Note that the iterations at which the two expressions are equal 
may differ. To express this fact, we choose the notation i1, i2. 



This course would now be finished if: 

•  the mathematical formulation of the data dependence 
problem had an accurate and fast solution, and 

•  there were enough loops in programs without data 
dependences, and 

•  dependence-free code could be executed by today’s 
parallel machines directly and efficiently. 

•  engineering these techniques into a production 
compiler were straightforward. 

There are enough hard problems to fill several courses! 

EE663, Spring 2012 Slide 14 



II. Performance of Basic 
Automatic Program 

Parallelization 
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Two  Decades of Parallelizing 
Compilers 

A Performance study at the beginning of the 90es (Blume study) 
Analyzed the performance of state-of-the-art parallelizers and 
vectorizers using the Perfect Benchmarks. 

William Blume and Rudolf Eigenmann, Performance Analysis of 
Parallelizing Compilers on the Perfect Benchmarks Programs, IEEE 
Transactions on Parallel and Distributed Systems, 3(6), November 1992, 
pages 643--656.  
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Good reasons for starting two decades back: 
•  We will learn simple techniques first. 
•  We will see how parallelization techniques have evolved 
•  We will see that extensions of the important techniques back then are still the 

important techniques today. 



Overall Performance 
of parallelizers in 1990 
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Speedup on 
8 processors 
with 4-stage 
vector units 



Performance of Individual Techniques 
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Transformations measured in 
the “Blume Study” 

•  Scalar expansion 
•  Reduction parallelization 
•  Induction variable substitution 
•  Loop interchange 
•  Forward Substitution 
•  Stripmining 
•  Loop synchronization 
•  Recurrence substitution 
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Scalar Expansion 
DO j=1,n 
    t = a(j)+b(j) 
    c(j) = t + t2 

ENDDO 

DO PARALLEL j=1,n 
PRIVATE t 
    t = a(j)+b(j) 
    c(j) = t + t2 

ENDDO 

DO PARALLEL j=1,n 
    t0(j) = a(j)+b(j) 
    c(j) = t0(j) + t0(j)2 

ENDDO 

Privatization 

Expansion 
We assume a shared-memory model: 

•  by default, data is shared, i.e., all 
processors can see and modify it 
•  processors share the work of 
parallel loops  

flow 

anti 

output 
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Parallel Loop Syntax and 
Semantics in OpenMP 

!$OMP PARALLEL PRIVATE(<private data>) 
   <preamble code> 
!$OMP DO 
DO i = lb, ub 

  <loop body code> 

ENDDO 
!$OMP END DO 
   <postamble code> 
!$OMP END PARALLEL 

Same code executed by all participating processors (threads) 

work (iterations) shared by participating processors (threads) 
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#pragma omp parallel for 

for (i=lb; i<=ub; i++) { 

  <loop body code> 

} 



Reduction Parallelization 

DO j=1,n 
    sum = sum + a(j) 

ENDDO 

!$OMP PARALLEL, PRIVATE (s) 
s = 0 
!$OMP DO 
DO j=1,n 
   s = s + a(j) 
ENDDO 
!$OMP ENDDO 
!$OMP ATOMIC 
        sum=sum+s 
!$OMP END PARALLEL !$OMP PARALLEL DO 

!$OMP+REDUCTION(+:sum) 
DO j=1,n 
    sum = sum + a(j) 

ENDDO 
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flow 

anti 



Induction Variable Substitution 
ind = ind0 
DO j = 1,n 
   a(ind) = b(j) 
   ind = ind+k 
ENDDO 

ind = ind0 
DO PARALLEL j = 1,n 
     a(ind0+k*(j-1)) = b(j) 
ENDDO 

Note, this is the reverse of strength reduction, an important 
transformation in classical (code generating) compilers. 

real d(20,100) 
DO j=1,n 
  d(1,j)=0 
ENDDO 

loop: 
 ... 
R0   ← &d+20*j 
(R0) ← 0 
... 
jump loop 

R0 ← &d 
loop: 
 ... 
(R0) ← 0 
... 
R0   ← R0+20 
jump loop 
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flow 
dependence 



Forward Substitution 
m = n+1 
… 
DO j=1,n 
    a(j) = a(j+m) 

ENDDO 

m = n+1 
… 
DO j=1,n 
    a(j) = a(j+n+1) 

ENDDO 

a = x*y 
b = a+2 
c = b + 4 

a = x*y 
b = x*y+2 
c = x*y + 6 

dependences no dependences 
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Stripmining 

DO j=1,n 
    a(j) = b(j) 

ENDDO 

DO i=1,n,strip 
    DO j=i,min(i+strip-1,n)     
        a(j) = b(j) 
    ENDDO 

ENDDO 

There are many variants of stripmining 
(sometimes called loop blocking) 

1 n 

strip 
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Loop Synchronization 

DO j=1,n 
    a(j) = b(j) 
    c(j) = a(j)+a(j-1) 

ENDDO 

DOACROSS j=1,n 
    a(j) = b(j) 
    post(current_iteration) 
    wait(current_iteration-1) 
    c(j) = a(j)+a(j-1) 

ENDDO 
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Basic idea of the recurrence solver: 

Recurrence Substitution 
DO =1,n 
    a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2) 

ENDDO 

call rec_solver(a(1),n,c0,c1,c2,c3) 

DO j=1,40 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=1,10 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=11,20 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=21,30 
   a(j) = a(j) + a(j-1) 
ENDDO 

DO j=31,40 
   a(j) = a(j) + a(j-1) 
ENDDO 

Error:            0                              ∆a(10)                  ∆a(10)+∆a(20)       ∆a(10)+∆a(20)+∆a(30) 
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DO j= 1,m 
   DO i=1,n 
     a(i,j) =a(i,j)+a(i,j-1) 

   ENDDO 
ENDDO 

Loop Interchange 

DO i= 1,n 
   DO j=1,m 
     a(i,j) = a(i,j)+a(i,j-1) 
   ENDDO 
ENDDO 

•  stride-1 references increase cache locality 
–  read: increase spatial locality 
–  write: avoid false sharing 

•   scheduling of outer loop is important (consider original loop nest): 
–  cyclic: no  locality w.r.t. to i loop 
–  block schedule: there may be some locality 
–  dynamic scheduling: chunk scheduling desirable 

•  cache organization is important 
•  parallelism at outer position reduces loop fork/join overhead 
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Effect of Loop Interchange 
Example: speedups of the most time-consuming loops 

in the ARC2D benchmark on 4-core machine 

0

2

4

6

8

10

STEPFX
DO230

STEPFX
DO210

 XPENTA
DO11

FILERX
DO39

Speedup

loop interchange applied in the 
process of parallelization 
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Execution Scheme for Parallel Loops 
1. Architecture supports parallel loops. Example: Alliant 

FX/8 (1980es) 
–  machine instruction for parallel loop 
–  HW concurrency bus supports loop scheduling 

a=0 
! DO PARALLEL 
DO i=1,n 
   b(i) = 2 
ENDDO 
b=3 

store #0,<a> 
load <n>,D6 
sub 1,D6 
load &b,A1 
cdoall D6 
   store #2,A1(D7.r) 
endcdoall   
store #3,<b> 

D7 is reserved 
for the loop 
variable. 
Starts at 0. 
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Execution Scheme for Parallel Loops 

2. Microtasking scheme (dates back to early 
IBM mainframes) 

p1 p2 p3 p4 
sequential 

sequential 

sequential 

parallel 

parallel 

problem: 
loop startup 
must be very fast 

init_helper_tasks 

wakeup_helpers 

wakeup_helpers 
sleep_helpers 

sleep_helpers 

microtask startup: 1 µs 
pthreads startup: up to 100 µs 
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Compiler Transformation and Runtime 
Function for the Microtasking Scheme 
a=0 
! DO PARALLEL 
DO i=1,n 
   b(i) = 2 
ENDDO 
b=3 

call init_microtasking() // once at program start 
... 
a=0 
call loop_scheduler(loopsub,i,1,n,b) 
b=3 

subroutine loopsub(mytask,lb,ub,b) 
DO i=lb,ub 
   b(i) = 2 
ENDDO 
END 

Master task 
  loop_scheduler: 
     partition loop iterations 
     wakeup 
     call loopsub(...) 
     barrier (all flags reset) 
     return 

Helper task 
 loop: 
   wait for flag 
   call loopsub(id,lb,ub,sh_var) 
   reset flag 

Helper 1: 
loopsub 
 lb,ub 
sh_var 

flag 

Control blocks 
(shared data) 
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III. Performance of Advanced  
Parallelization  
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Manual Improvements of the 
Perfect Benchmarks (1995) 
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Rudolf Eigenmann, Jay 
Hoeflinger, and David Padua, 
On the Automatic 
Parallelization of the 
Perfect Benchmarks.   
 IEEE Transactions on 
Parallel and Distributed 
Systems,  
volume 9, number 1, 
January 1998,  
pages 5-23. 

Same 
information as 
on Slide 17  

a eliminated file I/O 
b parallelized random number generator 



Performance of Individual 
Techniques in Manually 

Improved Programs (1995) 
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Performance loss when disabling individual techniques (Cedar machine)   



Overall Performance of the 
Cetus and ICC Compilers (2011) 
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NAS (Class A) Benchmarks on 8-core x86 processor 
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Performance of Individual 
Cetus Techniques (2011) 
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IV. Analysis and 
Transformation Techniques 

•  1 Data-dependence analysis 
•  2 Parallelism enabling transformations 
•  3 Techniques for multiprocessors/multicores 
•  4 Advanced program analysis 
•  5 Dynamic decision making 
•  6 Techniques for vector architectures 
•  7 Techniques for heterogeneous multicores 
•  8 Techniques distributed-memory machines 
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IV.1 Data Dependence Testing 

DO i=1,n 
   a(4*i) = . . . 
   . . .    =  a(2*i+1) 
ENDDO 

the question to answer: 
can 4*i ever be equal to 2*i+1 within i ∈[1,n] ? 

In general: given 
•  two subscript functions f and g and 
•  loop bounds lower, upper. 
Does  
   f(i1) = g(i2) have a solution such that  
   lower  ≤  i1, i2 ≤ upper ? 

Earlier, we have considered the simple case of a 
1-dimensional array enclosed by a single loop: 
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DDTests:      doubly-nested loops 

•  Multiple loop indices: 
DO i=1,n 
   DO j=1,m 
      X(a1*i + b1*j + c1) = . . . 
      . . .    =  X(a2*i + b2*j + c2) 
   ENDDO 
ENDDO 

dependence problem: 
a1*i1 - a2*i2 + b1*j1 - b2*j2  = c2 - c1 
1 ≤  i1, i2  ≤ n 
1 ≤  j1, j2  ≤ m 

Almost all DD tests expect the coefficients ax to be integer constants. 
Such subscript expressions are called affine. 
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DDTests:      even more complexity 

•  Multiple loop indices, multi-dimensional array: 
DO i=1,n 
   DO j=1,m 
      X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = . . . 
                     . . .    =  X(a2*i2 + b2*j2 + c2, d2*i2 +e2*j2 + f2) 
   ENDDO 
ENDDO 

dependence problem: 
a1*i1 - a2*i2 + b1*j1 - b2*j2  = c2 - c1 
d1*i1 - d2*i2 + e1*j1 - e2*j2  = f2 - f1 
1 ≤  i1, i2  ≤ n 
1 ≤  j1, j2  ≤ m 
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Data Dependence Tests: 
The Simple Case 

Note: variables i1, i2 are integers → diophantine equations. 

Equation a * i1 - b* i2 = c has a solution if and only iff 
                gcd(a,b)  (evenly) divides c 

    in our example this means:   gcd(4,2)=2, which does not 
divide 1 and thus there is no dependence. 

If there is a solution, we can test if it lies within the loop 
bounds. If not, then there is no dependence. 
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Euklid Algorithm: find gcd(a,b) 
   Repeat 
       a ← a mod b 
       swap a,b 
   Until b=0               

Performing the GCD Test 
•  The diophantine equation 
          a1*i1 + a2*i2 +...+ an*in  = c 
has a solution iff gcd(a1,a2,...,an) evenly divides c 

Examples: 
   15*i +6*j -9*k = 12   has a solution    gcd=3 
   2*i + 7*j = 3              has a solution    gcd=1 
   9*i + 3*j + 6*k = 5     has no solution  gcd=3 

→The resulting a is the gcd 

for more than two numbers: 
gcd(a,b,c) = (gcd(a,gcd(b,c)) 
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Other Data Dependence Tests 

•  The GCD test is simple but not accurate 
•  Other tests 

–  Banerjee(-Wolfe) test: widely used test 
–  Power Test: improvement over Banerjee test 
–  Omega test: “precise” test, most accurate for 

linear subscripts 
–  Range test: handles non-linear and symbolic 

subscripts 
–  many variants of these tests 
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The Banerjee(-Wolfe) Test 

Basic idea: 
if the total subscript range accessed by ref1 

does not overlap with the range accessed 
by ref2, then ref1 and ref2 are 
independent. 

DO j=1,100                 ranges accesses: 
   a(j) = …                   [1:100] 
   …   = a(j+200)         [201:300] 
ENDDO                       independent 
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Mathematical Formulation of the 
Test – Banerjee’s Inequalities 

    j1-j2 = 200 

Min: 1-100=-99 
Max: 100-1=99  
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The general case of a doubly-nested loop and  
single subscript, as shown on Slide 40:  

a1*i1-a2*i2 + b1*j1-b2*j2 = c2-c1 

Min: a1-a2*n 
Max: a1*n-a2 

Min: b1-b2*m 
Max: b1*n-b2 

Assuming positive 
coefficients 

Multiple dimensions:  apply test separately on each subscript or linearize 



Banerjee(-Wolfe) Test continued 

Weakness of the test: 

DO j=1,100                 ranges accessed: 
   a(j) = …                   [1:100] 
   …   = a(j+5)             [6:105] 
ENDDO                       no dependence ? 

We did not take into consideration that only loop-carried 
dependences matter for parallelization. 

A loop-carried flow dependence only exists, if a read in some 
iteration, j1, conflicts with a write in some later iteration, j2> j1  

Consider this flow dependence 
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Using Dependence Direction Information 
in the Banerjee(-Wolfe) Test 

Idea for overcoming the weakness:  
for loop-carried dependences, make use of the fact 

that j in ref2 is greater than in ref1 

DO j=1,100 
 a(j) = …  
    …   = a(j+5)  
ENDDO 

This is commonly referred to as the  
Banerjee test with direction vectors. 

Ranges accessed by 
 iteration j1 and any other 
 iteration j2, where j1 < j2 : 
   [j1] 
   [j1+6:105] 
 Independent for “>” direction 

Clearly, this loop has a 
dependence. But, it is 
an anti-dependence 
from a(j+5) to a(j) 

Still considering the potential flow 
dependence from a(j) to a(j+5) 
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Considering direction vectors can increase the complexity of the DD test 
substantially. For long vectors (corresponding to deeply-nested 
loops), there are many possible combinations of directions. 

A possible algorithm:  
1.  try (*,*…*) , i.e., do not consider directions 
2.  (if not independent) try (<,*,*…*), (=,*,*…*) 
3.  (if still not independent) try (<,<,*…*),(<,>,*…*) ,(<,=,*…*) 

                                                 (=,=,*…*), (=,<,*…*) 
. . . 
(This forms a tree) 

DD Testing with Direction Vectors 

*,  * , . . . , * 
=  =          = 
<  <          < 
    >          > 

(d1,d2,…,dn) 
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Data-dependence Test Driver 

Slide 50 

procedure DataDependenceAnalysis( PROG ) 
input : Program representing all source files: PROG 
output : Data dependence graph containing dependence arcs DDG 
// Collect all FOR loops meeting eligibility 
// Checks: Canonical, FunctionCall, ControlFlowModifier 
ELIGIBLE LOOPS = getOutermostEligibleLoops( PROG ) 
foreach LOOP in ELIGIBLE LOOPS 

// Obtain lower bounds, upper bounds and loop steps 
//      for this loop and all enclosed loops i.e. the loop-nest 
// Substitute symbolic information if available,  
LOOP_INFO = collectLoopInformation( LOOP and enclosed nest ) 
// Collect all array access expressions appearing within the 
//    body of this loop, this includes enclosed loops and non-perfectly 
//    nested statements 
ACCESSES = collectArrayAccesses( LOOP and enclosed nest ) 
// Traverse all array accesses, test relevant pairs and 
//    create a set of dependence arcs for the loop-nest 
LOOP_DDG = runDependenceTest( LOOP_INFO, ACCESSES ) 
// Add loop dependence graph to the program-wide DDG 
// The program-wide DDG is initially empty 
DDG += LOOP_DDG 

// return the program-wide data dependence graph once all loops are done 
return DDG 



Slide 51 

procedure runDependenceTest( LOOP_INFO, ACCESSES ) 
input : Loop information for the current loop nest LOOP_INFO 

   List of array access expressions, ACCESSES 
output : Loop data dependence graph LOOP_DDG 
foreach ARRAY_1 in ACCESSES of type write 

// Obtain alias information i.e. aliases to this array name 
// Alias information in Cetus is generated through points-to analysis 
ALIAS_SET = getAliases( ARRAY_1 ) 
// Collect all expressions/references to the same array from the entire list of accesses 
TEST_LIST = getOtherReferences( ALIAS_SET, ACCESSES ) 
foreach ARRAY_2 in TEST_LIST 

// Obtain the common loops enclosing the pair 
COMMON NEST = getCommonNest( ARRAY_1, ARRAY_2 ) 
// Possibly empty set of direction vectors under which 
//    dependence exists is returned by the test 
DV_SET = testAccessPair( ARRAY_1, ARRAY_2, COMMON_NEST, LOOP_INFO ) 
foreach DV in DV_SET 

// Create arc from source to sink 
DEP_ARC = buildDependenceArc( ARRAY_1, ARRAY_2, DV ) 
// Build the loop dependence graph by accumulating all arcs 
LOOP_DDG += DEP ARC 

// All expressions have been tested, return the loop dependence graph 
return LOOP_DDG 

Data-dependence Test Driver (continued) 
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procedure testAccessPair( A1, A2, COMMON_NEST, LOOP_INFO) 
input :  Pair of array accesses to be tested A1 and A2 

 Nest of common enclosing loops COMMON NEST 
 Information for these loops LOOP INFO 

output :  Possibly empty set of direction vectors under 
 which dependence exists DV SET 

// Partition the subscripts of the array accesses into dimension pairs 
// Coupled subscripts may be handled 
PARTITIONS = partitionSubscripts( A1, A2, COMMON_NEST ) 
foreach PARTITION in PARTITIONS 

// Depending on the number of loop index variables in the partition, 
// use the corresponding test.  
if( ZIV )     // zero index variables ZIV 

DVs = simpleZIVTest( PARTITION ) 
else         // single or multi-loop index variables: SIV, MIV 

// traverse and prune over tree of direction vectors, collect DVs where 
// dependence exists (traversal not shown here) 
foreach DV in DV_TREE using prune 

// In Cetus, the MIV test is performed using Banerjee or Range test 
DVs += MIVTest( PARTITION, DV, COMMON_NEST, LOOP_INFO ) 

// Merge DVs for all partitions 
DV_SET = merge( DVs ) 
return DV_SET 

Data-dependence Test Driver (continued) 



Non-linear and Symbolic DD Testing 

Weakness of most data dependence tests: 
subscripts and loop bounds must be affine, 
i.e., linear with integer-constant coefficients 

Approach of the Range Test:  
capture subscript ranges symbolically 
compare ranges: find their upper and lower bounds 

by determining monotonicity. Monotonically 
increasing/decreasing ranges can be compared by 
comparing their upper and lower bounds. 
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The Range Test 
Basic idea : 
1. Find the range of array accesses made in a given 

loop iteration j => r(j). 
2. If r(j) does not overlap with r(j+1) then there is no 

cross-iteration dependence 

Example: testing independence of the outer loop: 

DO i=1,n 
   DO j=1,m 
      A(i*m+j) = 0 
   ENDDO 
ENDDO 

range of A accessed in iteration ix:   [ix*m+1:(ix+1)*m] 

range of A accessed in iteration ix+1:   [(ix+1)*m+1:(ix+2)*m] 

ubx 

lbx+1 
ubx <  lbx+1  ⇒ no cross-iteration dependence 
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Symbolic comparison of ranges r1 and r2:   
max(r1)<min(r2) OR min(r1)>max(r2) => no overlap 



Range Test  continued 
DO i1=L1,U1 
   ... 
   DO in=Ln,Un 
       A(f(i1,...in)) = ... 
             ...      = A(g(i1,...in))  
   ENDDO 
  ... 
ENDDO 

Assume f,g are monotonically increasing w.r.t. all ix: 
  find upper bound of access range at loop k, 1<k<n: 
      successively substitute ix with Ux, x={n,n-1,...,k-1} 
  lowerbound is computed analogously     

If f,g are monotonically decreasing w.r.t. some iy, 
then substitute Ly when computing the upper 
bound.   

Determining monotonicity: consider d = f(...,ik,...) - f(...,ik-1,...) 
 If d>0 (for all values of ik) then f is monotonically increasing w.r.t. k 
 If d<0 (for all values of ik) then f is monotonically decreasing w.r.t. k 

What about symbolic coefficients? 
•  in many cases they cancel out 
•  if not, find their range (i.e., all possible values they can assume at this point 
in the program), and replace them by the upper or lower bound of the range. 

we need 
 range  

analysis 

we need powerful expression  
manipulation and comparison 

utilities  
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Handling Non-contiguous 
Ranges 

DO i1=1,u1 
   DO i2=1,u2 
       A(n*i1+m*i2)) = … 
   ENDDO 
ENDDO 

The basic Range Test finds 
independence   
of the outer loop  
    if n >= u2 and m=1 
But not  
    if n=1 and m>=u1 

Issues:  
•  legality of loop interchanging,  
•  change of parallelism as a result of loop interchanging 

Idea:  
  - temporarily (during program analysis) interchange the loops,  
  - test independence,  
  - interchange back 
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Some Engineering Tasks and 
Questions for DD Test Pass Writers 

- Start with the simple case: linear (affine) subscripts, single nests with 1-dim arrays. Subscript  
and loop bounds are integer constants. Stride 1 loop, lower bound =1 

- Deal with multiple array dims and loop nests 
- Add capabilities for non-stride-1 loops and lower bounds ≠1 
- How to deal with symbolic subscript coefficients and bounds 
- Ignore dependences in private variables and reductions 
- Generate DD vectors 
- Mark parallel loops 
- Things to think about: 
  -- how to handle loop-variant coefficients 
  -- how to deal with private, reduction, induction variables 
  -- how to represent DD information 
  -- how to display the DD info 
  -- how to deal with non-parallelizable loops (IO op, function calls, other?) 
  -- how to find eligible DO loops?  
  -- how to find eligible loop bounds, array subscripts? 
  -- what is the result of the pass? Generate DD info or set parallel loop flags? 
  -- what symbolic analysis capabilities are needed? 
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Data-Dependence Test, References 
•  Banerjee/Wolfe test 

–  M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel 
Processing", Int. J. of Parallel Programming, Vol.16, No.2, pp.137-178, 
1987"

•  Power Test"
–  M. Wolfe and C.W. Tseng, The Power Test for Data Dependence, IEEE 

Transactionson Parallel and Distributed Systems, IEEE Computer Society, 
3(5), 591-601,1992. 

•  Range test 
–  William Blume and Rudolf Eigenmann. Non-Linear and Symbolic Data 

Dependence Testing, IEEE Transactions of Parallel and Distributed 
Systems, Volume 9, Number 12, pages 1180-1194, December 1998. 

•  Omega test 
–  William Pugh. The Omega test: a fast and practical integer programming 

algorithm for dependence. Proceedings of the 1991 ACM/IEEE Conference 
on Supercomputing,1991 

•  I Test 
–  Xiangyun Kong, David Klappholz, and Kleanthis Psarris, "The I Test: A New 

Test for Subscript Data Dependence," Proceedings of the 1990 International 
Conference on Parallel Processing, Vol. II, pages 204-211, August 1990. 
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IV.2    Parallelism Enabling 
Techniques 
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DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

scalar privatization array privatization 

loop-carried 
anti dependence 

Advanced Privatization 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 

DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 
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Array Privatization 
Capabilities needed for 

Array Privatization 
•  array Def-Use Analysis  
•  combining and intersecting 

subscript ranges 
•  representing subscript 

ranges 
•  representing conditionals 

under which sections are 
defined/used 

•  if ranges are too complex to 
represent: overestimate 
Uses, underestimate Defs 

k = 5 
DO j=1,n 
   t(1:10)    =  A(j,1:10)+B(j) 
   C(j,iv) =  t(k) 
   t(11:m)    =  A(j,11:m)+B(j) 
   C(j,1:m) =  t(1:m) 
ENDDO 

DO j=1,n 
   IF (cond(j)) 
       t(1:m)    =  A(j,1:m)+B(j) 
      C(j,1:m) =  t(1:m) + t(1:m)**2 
   ENDIF 
   D(j,1) = t(1) 
ENDDO 
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Array Privatization continued 

Array privatization algorithm: 
•  For each loop nest: 

–  iterate from innermost to outermost loop: 
•  for each statement in the loop 

–  Find  array definitions; add them to the existing 
definitions in this loop. 

–  find array uses; if they are covered by a definition, 
mark this array section as privatizable for this loop, 
otherwise mark it as upward-exposed in this loop;  

•  aggregate defined and upward-exposed uses (expand 
from range per-iteration to entire iteration space); record 
them as Defs and Uses for this loop 
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Some Engineering Tasks and 
Questions for Privatization Pass Writers 

•  Start with scalar privatization 
•  Next step: array privatization with simple ranges (contiguous; no range 

merge) and singly-nested loops 
•  Deal with multiply-nested loops (-> range aggregation) 
•  Add capabilities for merging ranges 
•  Implement advanced range representation (symbolic bounds, non-

contiguous ranges) 
•  Deal with conditional definitions and uses (too advanced for this course) 
•  Things to think about 

–    what symbolic analysis capabilities are needed? 
–    how to represent advanced ranges? 
–    how to deal with loop-variant subscript terms? 
–    how to represent private variables? 
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Array Privatization, 
References 

•  Peng Tu and D. Padua. Automatic Array Privatization. 
Languages and Compilers for Parallel Computing. Lecture 
Notes in Computer Science 768, U. Banerjee, D. Gelernter, A. 
Nicolau, and D. Padua (Eds.), Springer-Verlag, 1994. "

•  Zhiyuan Li, Array Privatization for Parallel Execution of Loops, 
Proceedings of the 1992 ACM International Conference on 
Supercomputing"
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!$OMP PARALLEL PRIVATE(s) 
s=0 
!$OMP DO 
DO i=1,n 
     s=s+A(i) 
ENDDO 
!$OMP ATOMIC 
sum = sum+s 
!$OMP END PARALLEL DO i=1,n 

   sum  = sum + A(i) 
ENDDO 

loop-carried 
flow  
dependence 

Reduction  
Parallelization 

Note, OpenMP has a reduction clause,  
only reduction recognition is needed: 
!$OMP PARALLEL DO 
!$OMP+REDUCTION(+:sum) 
DO i=1,n 
   sum  = sum + A(i) 
ENDDO 

DO i=1,num_proc 
    s(i)=0 
ENDDO 
!$OMP PARALLEL DO  
DO i=1,n 
   s(my_proc)=s(my_proc)+A(i) 
ENDDO 
DO i=1,num_proc 
   sum=sum+s(i) 
ENDDO 

Scalar Reduction 
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Privatized reduction 
implementation 

Expanded reduction 
implementation 



DIMENSION sum(m),s(m) 
!$OMP PARALLEL PRIVATE(s) 
s(1:m)=0 
!$OMP DO 
DO i=1,n 
     s(expr)=s(expr)+A(i) 
ENDDO 
!$OMP ATOMIC 
sum(1:m) = sum(1:m)+s(1:m) 
!$OMP END PARALLEL 

DIMENSION sum(m) 
DO i=1,n 
   sum(expr)  = sum(expr) + A(i) 
ENDDO 

Parallelizing Array Reductions  
DIMENSION sum(m),s(m,#proc) 
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    s(i,j)=0 
ENDDO 
ENDDO 
!$OMP PARALLEL DO  
DO i=1,n 
   s(expr,my_proc)=s(expr,my_proc)+A(i) 
ENDDO 
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    sum(i)=sum(i)+s(i,j) 
ENDDO 
ENDDO 

Note, OpenMP 1.0 does not support such array reductions 

Array  Reductions (a.k.a. irregular or 
histogram reductions) 
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Privatized reduction 
implementation 

Expanded reduction 
implementation 



Recognizing Reductions 

Recognition Criteria:   
1.   the loop may contain one or more reduction 

statements of the form     X=X ⊗ expr  ,	
�	
�where 
•  X is either scalar or an array expression, a[sub] 

(sub must be the same on LHS and RHS) 
•  ⊗ is a reduction operation, such as +, *, min, max 

2.  X must not be used in any non-reduction statement 
of the loop, nor in expr 
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Reduction 
Recognition 
Algorithm  

Slide 68 

procedure RecognizeSumReductions (L) 
Input : Loop L 
Output: reduction annotations for loop L, inserted in the IR 

REDUCTION = {} // set of candidate reduction expressions 
REF = {} // set of non-reduction variables referenced in L 
foreach stmt in L 

localREFs = findREF(stmt) // gather all variables referenced in stmt 
if (stmt is AssignmentStatement) 

candidate = lhs_expr(stmt) 
increment = rhs_expr(stmt) – candidate // symbolic subtraction 
if ( !(baseSymbol(candidate) in  findREF(increment)) ) // criterion1 is satisfied 

REDUCTION = REDUCTION ∪ candidate 
localREFs = findREF(increment) // all variables referenced in inc. expr. 

REF = REF ∪ localREFs // collect non-reduction variables for criterion 2 
foreach expr in REDUCTION 

if ( ! (baseSymbol(expr) in REF) ) // criterion 2 is satisfied 
if (expr is ArrayAccess AND expr.subscript is loop-variant) 

CreateAnnotation(sum-reduction, ARRAY, expr) 
else 

CreateAnnotation(sum-reduction, SCALAR, expr) 
end procedure 



Reduction Compiler Passes 

Reduction recognition and parallelization 
passes: 

Induction variable recognition 
Reduction recognition                
Privatization 
Data dependence test 
Loop parallelization 
<mapping passes> 
Profitability decision 
Reduction parallelization 

compiler passes 

recognizes and 
annotates reduction 
variables 

performs the reduction 
transformation 
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Performance Considerations 
for Reduction Parallelization 

•  Parallelized reductions execute substantially more code than 
their serial versions ⇒  overhead if the reduction (n) is small. 

•  In many cases (for large reductions) initialization and sum-up 
are insignificant.  

•  False sharing can occur, especially in expanded reductions, if 
multiple processors use adjacent array elements of the 
temporary reduction array (s).  

•  Expanded reductions exhibit more parallelism in the sum-up 
operation. 

•  Potential overhead in initialization, sum-up, and memory used 
for large, sparse array reductions ⇒ compression schemes can 
become useful. 
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ind = k 
DO i=1,n 
   ind  = ind + 2 
   A(ind) = B(i) 
ENDDO 

loop-carried 
flow  
dependence 

Parallel DO i=1,n 
   A(k+2*i) = B(i) 
ENDDO 

Induction Variable Substitution 

This is the simple case of an induction variable 
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Generalized Induction Variables 
ind=k 
DO j=1,n 
   ind  = ind + j 
   A(ind) = B(j) 
ENDDO 

Parallel DO j=1,n 
   A(k+(j**2+j)/2) = B(j) 
ENDDO 

DO i=1,n 
   ind1  = ind1 + 1 
   ind2  = ind2 + ind1 
   A(ind2) = B(i) 
ENDDO 

DO i=1,n 
   DO j=1,i 
       ind  = ind + 1 
       A(ind) = B(i) 
   ENDDO 
ENDDO 
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Recognizing GIVs 
•  Pattern Matching:   

–   find  induction statements in a loop nest of the form   
iv=iv+expr   or  iv=iv*expr, where iv is an scalar integer. 

–  expr must be loop-invariant or another induction variable 
(there must not be cyclic relationships among IVs) 

–  iv must not be assigned in a non-induction statement 

•  Abstract interpretation: find symbolic increments 
of iv per loop iteration 

•  SSA-based recognition 
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GIV Closed-form Computation and 
Substitution Algorithm 

Loop structure L0:     stmt type 

For j: 1..ub 
… 
S1:   iv=iv+exp             I 
… 
S2:  loop using iv         L 
… 
S3:  stmt using iv         U 
… 
Rof 

Step1: find the increment rel. to start of loop L 
FindIncrement(L) 
   inc=0 
   foreach si of type I,L 
      if type(si)=I        inc += exp  
      else  /* L */         inc+= FindIncrement(si)  
      inc_after[si]=inc 
   inc_into_loop[L]= ∑1

j-1(inc) ; inc may depend 
   return ∑1

ub(inc)                   ; on j 

Step 2: substitute IV 
Replace (L,initval) 
  val = initval+inc_into_loop[L]  
  foreach si of type I,L,U 
      if type(si)=L      Replace(si,val) 
      if type(si)=L,I    val=initialval    
                                +inc_into_loop[L]  
                                +inc_after[si] 
      if type(si)=U   Substitute(si,iv,val) 

Main: 
totalinc = FindIncrement(L0) 
Replace(L0,iv) 
InsertStatement(“iv =  iv+totalinc”)  

For coupled GIVs: begin with independent iv. 

Insert this  
statement 

If iv is live-out 
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Induction Variables, References 
•  B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris 

Parallelizing Compiler.  ACM Int. Conf. on Supercomputing (ICS'95), 
June 1995. "

•  Mohammad R. Haghighat , Constantine D. Polychronopoulos, Symbolic 
analysis for parallelizing compilers, ACM Transactions on Programming 
Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996 "

•  Michael P. Gerlek , Eric Stoltz , Michael Wolfe, Beyond induction 
variables: detecting and classifying sequences using a demand-driven 
SSA form, ACM Transactions on Programming Languages and 
Systems (TOPLAS), v.17 n.1, p.85-122, Jan. 1995"
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!$OMP PARALLEL DO  
DO set=1,? 
  i = ? 
  j = ? 
  setsize= ? 
  DO k=0,setsize-1 
       A(i+k,j+k)=A(i-1+k,j-1+k) 
  ENDDO 
ENDDO 

!$OMP PARALLEL DO  
DO set=1,9 
  i = max(5-set,1) 
  j = max(-3+set,1) 
  setsize = min(4,5-abs(set-5)) 
  DO k=0,setsize-1 
       A(i+k,j+k)=A(i-1+k,j-1+k) 
  ENDDO 
ENDDO 

DO i=1,4 
  DO j=1,6 
     A(i,j)= A(i-1,j-1) 
  ENDDO 
ENDDO 

j 

i Iteration space graph:  
Shared regions show sets of iterations in the 
transformed code that can be executed in 
parallel. 

Loop Skewing 
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DO i=2,n-1 
  DO j=2,n-1 
     A(i,j)= (A(i+1,j) +A(i-1,j)  
              +A(i,j+1) +A(i,j-1))/4 
  ENDDO 
ENDDO 

j 

i 

Loop Skewing for the 
Wavefront Method 
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DO j=4, n+n-2 
DOALL i= max(2, n- j+ 1), min(n- 1, j- 2) 

A(i, j- i) = (A(i+ 1, j- i) + A(i- 1, j- i) 
 +A(i, j+ 1- i) + A(i, j- 1 +i)/4 

ENDDO 
ENDDO 

Outer loop is serial 
Inner loop is parallel 

2 

3 

4 

5 
. 
. 
. 

2 3 4 5 6 7 . . . 



IV.3 Techniques for 
Multiprocessors: 

Mapping Parallelism to Shared-memory 
Machines 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

DO i=1,n 
  C(i) = A(i-1)+D(i) 
ENDDO 

DO i=1,n 
  A(i) = B(i) 
  C(i) = A(i-1) + D(i) 
ENDDO 

loop fusion 

Loop Fusion and Distribution 

•  Loop fusion is the reverse of loop distribution 
•  Fusion reduces the loop fork/join overhead and enhances data affinity 
•  Distribution inserts a barrier synchronization between parallel loops 
•  Both transformations reorder computation 
•  Legality: dependences in fused loop must be lexically forward 
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loop distribution 
        (fission) 



DO i=1,n 
   A(i) = B(i)+A(i-1) 
   DO j=1,m 
      D(i,j)=E(i,j) 
   ENDDO 
ENDDO 

DO i=1,n 
   A(i) = B(i)+A(i-1) 
ENDDO 

DOALL j=1,m 
   DO i=1,n 
      D(i,j)=E(i,j) 
   ENDDO 
ENDDO 

•  enables 
interchange 
•  separates 
out partial 
paralleism 

Loop Distribution Enables 
Other Techniques 

In a program with multiply-nested loops, there can be a large number of 
possible program variants obtained through distribution and interchanging 
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Enforcing Data Dependence 
Criterion for correct transformation and execution of a 

computation involving a data dependence with vector 
v : (=,…<,…*) 

   Let Ls be the outermost loop with non-“=” DD-direction : 
–  Ls must be executed serially 
–  The direction at Ls must be “<” 

Same rule applies to all dependences 

Note that a data dependence is defined with respect to an ordered 
execution. For autoparallelization, this is the serial program order. 

 User-defined, fully parallel loops by definition do not have cross-iteration 
dependences. Legality rules for transforming already parallel programs are 
different. 

Ls 
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Loop Interchange 
Legality of Loop interchange and resulting parallelism can be 
tested with the above rules: 
After loop interchange, the two conditions must still hold. 
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DO i=1,n 
  DOALL j=1,m 
      A(i,j) = A(i-1,j) 
  ENDDO 
ENDDO 

DOALL j=1,m 
  DO i=1,n 
      A(i,j) = A(i-1,j)  
  ENDDO 
ENDDO 

DOALL i=1,n 
  DO j=1,m 
      A(i,j) = A(i-1,j-1) 
  ENDDO 
ENDDO 

DOALL j=1,m 
  DO i=1,n 
      A(i,j) = A(i-1,j-1)  
  ENDDO 
ENDDO 



PARALLEL DO ij=1,n*m 
   i = 1 + (ij-1) DIV m 
   j = 1 + (ij-1) MOD m 
  A(i,j) = B(i,j) 
ENDDO    

PARALLEL DO i=1,n 
  DO j=1,m 
      A(i,j) = B(i,j) 
  ENDDO 
ENDDO 

loop 
coalescing 

Loop Coalescing 
a.k.a. loop collapsing 

Loop coalescing 
•  can increase the number of iterations of a parallel loop  

  load balancing 
•  adds additional computation  

  overhead 
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DO j=1,m 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
ENDDO 

loop 
blocking 

DO PARALLEL i1=1,n,block 
   DO j=1,m 
      DO i=i1,min(i1+block-1,n) 
         B(i,j)=A(i,j)+A(i,j-1) 
      ENDDO  
   ENDDO 
ENDDO 

Loop Blocking/Tiling 

This is basically the same transformation as 
stripmining, but followed by loop interchanging. 

j 

i 

j 

i 

p1 

p2 

p3 

p4 
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Loop Blocking/
Tiling  

continued 

DO j=1,m 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
ENDDO 

!$OMP PARALLEL 
DO j=1,m 
!$OMP DO 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
!$OMP ENDDO NOWAIT 
ENDDO 
!$OMP END PARALLEL 

j 

i 

j 

i 

p1 

p2 

p3 

p4 
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Choosing the Block Size 
The block size must be small enough so that all data references 

between the use and the reuse fit in cache. 

If the cache is shared, all cores use it simultaneously. Hence the 
effective cache size appears smaller: 

                           block < cachesize / (r1+r2+3)*d*num_cores 

Reference: Zhelong Pan, Brian Armstrong, Hansang Bae and Rudolf Eigenmann, 
On the Interaction of Tiling and Automatic Parallelization, First International 
Workshop on OpenMP (Wompat),  2005. 

DO j=1,m 
   DO k=1,block 
      … (r1 data references) 
      … = A(k,j) + A(k,j-d) 
      … (r2 data references) 
   ENDDO 
ENDDO 

Number of references made between the 
access A(k,j) and the access A(k,j-d) when 
referencing the same memory location: 
(r1+r2+3)*d*block 
 block < cachesize / (r1+r2+3)*d 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

PARALLEL DO (inter-cluster) i1=1,n,strip 
   PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n) 
      A(i) = B(i) 
  ENDDO 
ENDDO 

strip mining 
for multi-level 
parallelism 

Multi-level Parallelism from 
Single Loops 

M 
P P P P 

M 
P P P P 

M 
P P P P 

M 
P P P P 

M cluster 
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IV.4     Advanced Program 
Analysis 
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Interprocedural Analysis 

•  Most compiler techniques work intra-
procedurally 

•  Ideally, inter-procedural analyses and 
transformations available 

•  In practice: inter-procedural operation of basic 
analysis works well 

•  Inline expansion helps but no silver bullet 
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Interprocedural Constant 
Propagation 

Making constant values of variables 
known across subroutine calls 

Subroutine A 

   j = 150 

   call B(j) 

END 

Subroutine B(m) 

DO k=1,100 
   X(i)=X(i+m) 
ENDDO 

END 

knowing that m>100 allows this 
loop to be parallelized 
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An Algorithm for Interprocedural 
Constant Propagation 

Intra-procedural part:  
determine jump functions for all subroutines 

Subroutine X(a,b,c) 
e = 10 
d = b+2 
call Y(c) 
f = b*2 
call Z(a,d,c,e,f) 
END 

JY,1 = c 
JZ,1 = a       (jump function of first parameter) 
JZ,2 = b+2 
JZ,3 = ⊥      (called bottom, meaning non-constant) 
JZ,4 = 10 
JZ,5 = ⊥ 

•  Mechanism for finding jump functions: (local) forward substitution and  
  interprocedural MAYMOD information. 
•  Here we assume the compiler supports jump functions of the form  
  P+const  (P is a   subroutine parameter of the callee). 
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Constant Propagation Algorithm: 
Interprocedural Part 

1.  initialize all formal parameters to the value T (called top = non yet known) 
2.  for all jump functions: 

–  if it is ⊥: set formal parameter value to ⊥  (called bottom = unknown) 

–  if it is constant and the value of the formal parameter is the same 
constant or T : set the value to this constant 

3.  put all formal parameters on a work queue 
4.  repeat: take a parameter from the queue until queue is empty 

for all jump functions that contain this parameter: 
•  determine the value of the target parameter of this jump function. 

Set it to this value, or to ⊥ if it is different from a previously set 
value. 

•  if the value of the target parameter changes, put this parameter 
on the queue 
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Examples of Constant Propagation 

EE663, Spring 2012 

x = 3 
Call SubY(x) 

Subroutine SubY(a) 

… = ….a… 

x = 3 
Call SubY(x) 

Subroutine SubY(a) 
b = a+2 
Call SubZ(b) 

Subroutine SubZ(e) 

  …   = … e…. 

x = 3 
Call SubY(x) 

Subroutine SubY(a) 
b = a+2 
Call SubZ(b) 

Subroutine SubZ(e) 

  …   = … e…. 

t = 6 
Call SubU(t) 

Subroutine SubU(c) 
d = c-1 
Call SubZ(d) 
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Consider 
what 
happens if 
t = 7  



Interprocedural  
Data-Dependence Analysis 

•  Motivational examples: 

DO i=1,n 
  call clear(a,i) 
ENDDO 

Subroutine clear(x,j) 
   x(j) = 0 
END 

DO i=1,n 
  a(i) = b(i) 
  call dupl(a,i) 
ENDDO 

Subroutine dupl(x,j) 
   x(j) = 2*x(j) 
END 

DO k=1,m 
   DO i=1,n 
      a(i,k) = math(i,k) 
      call smooth(a(i,k)) 
ENDDO 

Subroutine smooth(x,j) 
   x(j) = (x(j-1)+x(j)+x(j+1))/3 
END 
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Interprocedural  
Data-Dependence Analysis 

•  Overall strategy: 
– subroutine inlining 
– move loop into called subroutine 
– collect array access information in callee 

and use in the analysis of the caller 
→ will be discussed in more detail 
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Interprocedural  
Data-Dependence Analysis 

•  Representing array access information 
–  summary information 

•  [low:high] or [low:high:stride] 
•  sets of the above 

–  exact representation 
•  essentially all loop bound and subscript information is 

captured 

–  representation of multiple subscripts 
•  separate representation 
•  linearized 
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Interprocedural  
Data-Dependence Analysis 

•  Reshaping arrays 
– simple conversion 

•  matching subarray or  2-D→1-D 
– exact reshaping with div and mod 
–  linearizing both arrays 
– equivalencing the two shapes  

•  can be used in subroutine inlining 
Important: reshaping may lose the implicit 

assertion that array bounds are not violated! 
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Symbolic Analysis 

•  Expression manipulation techniques 
–  Expression simplification/normalization 
–  Expression comparison 
–  Symbolic arithmetic 

•  Range analysis 
–  Find lower/upper bounds of variable values at a 

given statement 
•  For each statement and variable, or 
•  Demand-driven, for a given statement and variable 
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Symbolic Range Analysis 
Example 
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int foo(int k) {} 
[]  

int i, j;  
[]  

double a;  
[] 

for ( i=0; i<10; ++i ) {  
[0<=i<=9] 

a=(0.5*i); 
} 

[i=10]  
j=(i+k); 

[i=10, j=(i+k)]  
return j; 

} 



Alias Analysis 

Simple case: different named variables allocated in same 
storage location 

•  Fortran Equivalence statement 
•  Same variable passed to subroutine by-reference as two 

different parameters (can happen in Fortran and C++, but 
not in C) 

•  Global variable also passed as subroutine parameter  
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Find references to the same storage by different names 
⇒  Program analyses and transformations must consider all these 

names 



Pointer Alias Analysis 
•  More complex: variables pointed to by named pointers 

–  p=&a; q=&a  =>  *p, *q are aliases 
–  Same variable passed to C subroutines via pointer 

•  Most complex: pointers between dynamic data structure 
objects 
–  This is commonly referred to as shape analysis  
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Is Alias Analysis in Parallelizing 
Compilers Important? 

•  Fortran77: alias analysis is simple/absent 
–  By Fortran rule, aliased subroutine parameters must not be 

written to 
–  there are no pointers 

•  C programs: alias analysis is a must 
–  Pointers, pointer arithmetic 
–  No Fortran-like rule about subroutine parameters 
–  Without alias information, compilers would have to be very 

conservative => big loss of parallelism 
–  Classical science/engineering applications do not have 

dynamic data structures => no shape analysis needed 
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IV.5 Dynamic Decision 
Support 
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Achilles’ Heel of Compilers 
Big compiler limitations:  

–  Insufficient compile-time knowledge 
•  Input data 
•  Architecture parameters (e.g., cache size) 
•  Memory layout 

–  Even if this information is known: Performance models too 
complex 

Effect: 
–  Unknown profitability of optimizations 
–  Inconsistent performance behavior 
–  Conservative behavior of compilers 
–  Many compiler options 
–  Users need to experiment with options 
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Multi-version Code 
IF (d>n) 
    PARALLEL DO i=1,n 
          a(i) = a(i+d) 
    ENDDO 
ELSE    
    DO i=1,n 
          a(i) = a(i+d) 
    ENDDO 

Limitations 
•  Less readable 
•  Additional code 
•  Not feasible for all 

optimizations 
•  Combinatorial explosion 

when trying to apply to 
many optimization 
decisions 

EE663, Spring 2012 Slide 106 



Profiling 
•  Gather missing information in a profile run 

–  Compiler instruments code that gathers at runtime 
information needed for optimization decisions 

•  Use the gathered profile information for improved 
decision making in a second compiler invocation 

•  Training vs. production data 
•  Initially used for branch prediction. Now increasingly 

used to guide additional transformations. 
•  Requires a compiler performance model 
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Autotuning – Empirical Tuning 

Try many optimization 
variants; pick the 
best at runtime. 

•  No compiler performance 
model needed 

•  Optimization decisions 
based on true execution time 

•  Dependence on training data 
(same as profiling) 

•  Potentially huge search 
space 

•  Whole-program vs. section-
level tuning 

EE663, Spring 2012 Slide 108 

Search 
Space 

Navigation 
Version 

Generation 

Runtime 
Evaluation 

Many active research projects 



IV.4 Techniques for Vector 
Machines 
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Vector Instructions 

A vector instruction operates on a number of 
data elements at once. 
Example:   vadd va,vb,vc,32     
vector operation of length 32 on vector registers va,vb, and vc 
–  va,vb,vc can be  

•  Special cpu registers or memory → classical 
supercomputers 

•  Regular registers, subdivided into shorter partitions (e.g., 
64bit register split 8-way) → multi-media extensions 

–  The operations on the different vector elements 
can overlap → vector pipelining 
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Applications of Vector 
Operations 

•  Science/engineering applications are typically 
regular with large loop iteration counts. 
This was ideal for classical supercomputers, which 

had long vectors (up to 256; vector pipeline startup 
was costly). 

•  Graphics applications can exploit “multi-
media” register features and instruction sets. 
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DO i=1,n 
   A(i) = B(i)+C(i) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 

Basic Vector Transformation 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i-1) = D(i)**2 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
C(0:n-1)=D(1:n)**2 

The triplet notation is interpreted to mean “vector operation”. Notice that this 
is not (necessarily) the same meaning as in Fortran 90,  
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DO i=1,n 
  A(i) = B(i)+C(i) 
  D(i) = A(i)+A(i-1) 
ENDDO 

DO i=1,n 
  A(i) = B(i)+C(i) 
ENDDO 

DO i=1,n 
  D(i) = A(i)+A(i-1) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
D(1:n)=A(1:n)+A(0:n-1) 

dependence 

loop  
distribution 

vectorization 

Distribution and Vectorization  
The transformation done on the previous slide involves loop distribution. Loop 
distribution reorders computation and is thus  subject to  data dependence 
constraints. 

The transformation is not legal if there is a 
lexical-backward dependence: 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i+1) = D(i)**2 
ENDDO 

loop-carried  
dependence Statement reordering may help 

resolve the problem. However, this is 
not possible if there is a dependence 
cycle. 
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Vectorization Needs 
Expansion 

... as opposed to privatization 

DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

DO i=1,n 
   T(i)  =  A(i)+B(i) 
   C(i) =  T(i) + T(i)**2 
ENDDO 

expansion 

T(1:n) = A(1:n)+B(1:n) 
C(1:n) = T(1:n)+T(1:n)**2 

vectorization 
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DO i=1,n 
   IF (A(i) < 0) A(i)=-A(i) 
ENDDO 

WHERE (A(1:n) < 0) A(1:n)=-A(1:n) 

conditional vectorization 

Conditional Vectorization 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

DO i1=1,n,32 
  DO i=i1,min(i1+31,n) 
      A(i) = B(i) 
  ENDDO 
ENDDO 

stripmining 

Stripmining for Vectorization 

Stripmining turns a single loop into a doubly-nested loop for two-level parallelism. 
It also needs to be done by the code-generating compiler to split an operation into 
chunks of the available vector length. 
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IV.7   Compiling for 
Heterogeneous 

Architectures 



Why Heterogeneous 
Architectures? 

•  Performance 
–  Fast uniprocessor best for serial code 
–  Many simple cores best for highly parallel code 
–  Special-purpose architectures for accelerating 

certain code patterns 
•  E.g., math co-processor 

•  Energy 
–  Same arguments hold for power savings 
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Examples of Accelerators 

•  GPU 
•  nvidia GPGPU 
•  IBM Cell 
•  Intel MIC 
•  FPGAs 
•  Crypto processor 
•  Network processor 
•  Video Encoder/decoder 
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Accelerators are typically used as      
co-processors. 
•  CPU+accelerator = heterogeneous  
•  Shared or distributed address space 



Accelerator Architecture 

Example GPGPU: 
•  Address space is 

separate from CPU 
•  Complex Memory 

hierarchy 
•  Large number of cores 
•  Multithreaded SIMD 

execution 
•  Optimized for coalesced 

(stride-1) accesses 
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CPU GPU 

Thread Block M 

Thread Block 0 

Shared Memory 

Thread 0 ••• 

Registers Registers 

Local  
Memory 

Local  
Memory 

Texture Memory with a Dedicated Cache 

Constant Memory with a Dedicated Cache 

        Global Memory 

Thread K 

Grid 

CPU 
Memory 

CUDA 
Memory 
Model 



Compiler Optimizations for 
GPGPUs 

•  Optimizing GPU Global Memory Accesses 
–  Parallel Loop Swap 
–  Loop Collapsing 
–  Matrix Transpose 

•  Exploiting GPU On-chip Memories 

•  Optimizing CPU-GPU Data Movement 
–  Resident GPU Variable Analysis 
–  Live CPU Variable Analysis 
–  Memory Transfer Promotion Optimization 
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Parallel Loop-Swap 
Transformation 

#pragma omp parallel for 
for(i=0; i< N; i++) 
      for(k=0; k<N; k++) 
            A[i][k] = B[i][k]; 
    Input OpenMP code 

#pragma omp parallel for 
schedule(static, 1) 

for(k=0; k<N; k++) 
      for(i=0; i<N; i++) 
            A[i][k] = B[i][k]; 
   Optimized OpenMP code 

T0 

i 

k

T1 
T2 
T3 

Thread ID 

Global Memory 

Memory access at time t 

T0 

i 

T1 T2 T3 Thread ID 

Global Memory 

k

Memory 
access at 
time t 
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Loop Collapsing 
Transformation 

#pragma omp parallel for 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
  Input OpenMP code 

#pragma omp parallel 
#pragma omp for collapse(2) 

schedule(static, 1) 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
  Optimized OpenMP code 

T0 
T1 
T2 
T3 

Thread ID 

i 

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7 

Global Memory 

Global Memory 

R. Eigenmann,  Programming Models and Compilers for Accelerators Slide 123 



Matrix-Transpose Transformation 

float d[N][M] 
... 
<transpose d on transfer to GPU> 
#kernel function: 
float d[M][N] 
# pragma omp parallel  
for(k=0; i< N; i++) 
    for(i=0; k<M; k++) 
        …d[i,k] …]; 

T0 

k

i 

T1 
T2 
T3 

Thread ID 

Global Memory 

Memory access at time t 

T0 

i 

T1 T2 T3 Thread ID 

Global Memory 

k

Memory 
access at 
time t 

A 
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Techniques to Exploit GPU      
On-chip Memories 

Caching Strategies 

      Reg: Registers               CM: Constant Memory 
      SM: Shared Memory      TM: Texture Memory 

Variable Type Caching Strategy 

R/O shared scalar w/o locality SM 

R/O shared scalar w/ locality SM, CM, Reg 

R/W shared scalar w/ locality Reg, SM 

R/W shared array element w/ locality Reg 

R/O 1-dimensional shared array w/ locality TM 

R/W private array w/ locality SM 
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Techniques to Optimize Data 
Movement between CPU and GPU 
•  Resident GPU Variable Analysis 

–  Up-to-date data in GPU global memory:  
     do not copy again from CPU. 

•  Live CPU Variable Analysis 
–  After a kernel finishes:  
    only transfer live CPU variables from GPU to 

CPU. 
•  Memory Transfer Promotion Optimization 

–  Find optimal points to insert necessary memory 
transfers 
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GPGPU Performance Relative 
to CPU 
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Importance of 
Individual 

Optimizations 

EE663, Spring 2012 
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IV.8   Techniques Specific 
to Distributed-memory 

Machines 
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Execution Scheme on a 
Distributed-Memory Machine 

M 
P 

M 
P 

M 
P 

M 
P 

Typical execution scheme: 
•  All nodes execute the same program 
•  Program uses node_id to select the 
subcomputation to execute on each 
participating processor and the data to access. 
For example,  

mystrip=⎡n/max_nodes⎤ 
lb = node_id*mystrip +1 
ub = min(lb+mystrip-1,n) 
DO i=lb,ub 
   . . . 
ENDDO 

DO i=1,n 

. . . 

ENDDO 

This is called Single-Program-Multiple-Data (SPMD) execution 
scheme 

how to place  
and access 
data ? 

how/when to  
synchronize ? 
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Data Placement 

Single owner: 
•  Data is distributed onto the participating 

processors’ memories 

Replication: 
•  Multiple versions of the data are placed 

on some or all nodes. 
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numbers indicate the node of a 4-processor 
distributed-memory machine on which the 
array section is placed 

1 2 3 4 block 
distribution 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4    cyclic 
distribution 

1 2 3 4           block-cyclic 
distribution 

1 

IND(1) IND(2) IND(3) IND(4)           indexed 
distribution 

IND(5) 

        index array 

Data Distribution Schemes 

Automatic data distribution is difficult because it is a 
global optimization.  
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DO i=1,n 
   B(i) = A(i)+A(i-1) 
ENDDO 

send (A(ub),my_proc+1) 
receive (A(lb-1),my_proc-1)  
DO i=lb,ub 
   B(i) = A(i)+A(i-1) 
ENDDO 

message 
generation 

•  lb,ub determine the iterations assigned to each processor. 
•  data uses block distribution and matches the iteration distribution 
•  my_proc is the current processor number 

Message Generation 
for single-owner placement 

Compilers for languages such as HPF (High-Performance 
Fortran) have explored these ideas extensively 

EXAMPLE 
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Owner-computes Scheme 

DO i=1,n 
 A(i)=B(i)+B(i-m) 
 C(ind(i))=D(ind2(i)) 
ENDDO 

DO i=1,n 
    send/receive what’s necessary 
    IF I_own(A(i)) THEN 
        A(i) = B(i)+B(i-m) 
    ENDIF 
    send/receive what’s necessary 
    IF I_own(C(ind(i)) THEN 
        C(ind(i))=D(ind2(i)) 
    ENDIF 
ENDDO 

•  nodes execute those iterations and statements whose LHS they own 
•  first they receive needed RHS elements from remote nodes 
•  nodes need to send all elements needed by other nodes 
Example shows basic idea only. Compiler optimizations needed!  

In general, the elements accessed by a processor are different from the elements 
owned by this processor as defined by the data distribution 

EE663, Spring 2012 Slide 134 



Compiler Optimizations 
for the raw owner computes scheme    

•  Eliminate conditional execution 
–  combine if statements with same condition 
–  reduce iteration space if possible 

•  Aggregate communication 
–  combine small messages into larger ones 
–  tradeoff: delaying a message enables message 

aggregation but increases the message latency. 
•  Message Prefetch 

–  moving send operations earlier in order to reduce 
message latencies. 

there is a large number of research papers describing such techniques 
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Message Generation for 
Virtual Data Replication 

Broadcast written data 

Fully parallel section  
w. local reads and writes 

Fully parallel section  
w. local reads and writes 

time 

Optimization: reduce broadcast 
operations to necessary point-to-point 
communication 

Advantages: 
• Fully parallel sections with local reads and writes 
• Easier message set computation (no partitioning per processor needed) 

Disadvantages: 
• Not data-scalable 
• More write operations necessary (but, collective communication can be used)  
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7     Techniques for  
Instruction-Level 

Parallelization 
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Implicit vs. Explicit ILP 

Implicit ILP: ISA is the same as for sequential 
programs.  
–  most processors today employ a certain degree of 

implicit ILP 
–  parallelism detection is entirely done by the hardware 
–  compiler can assist ILP by arranging the code so that 

the detection gets easier. 
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Implicit vs. Explicit ILP 
Explicit ILP: ISA expresses parallelism.  

–  parallelism is detected by the compiler 
–  parallelism is expressed in the form of 

•  VLIW (very long instruction words): packing several instructions 
into one long word 

•  EPIC (Explicitly Parallel Instruction Computing): bundles of (up 
to three) instructions are issued. Dependence bits can be 
specified.  

   Used in Intel/HP IA-64 architecture. The processor also 
supports predication, early (speculative) loads, prepare-to-
branch, rotating registers. 
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trace scheduling 

Trace Scheduling 
(invented for VLIW processors, still a useful terminology) 

Two big issues must be solved by 
all approaches: 
1. Identifying the instruction sequence 

that will be inspected for ILP. 
    Main obstacle: branches 
2. reordering instructions so that 

machine resources are exploited 
efficiently. 

trace selection 

trace compaction 
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Trace Selection 
•  It is important to have a large instruction window (block) within 

which the compiler can find parallelism.  
•  Branches are the problem. Instruction pipelines have to be 

flushed/squashed at branches 
•  Possible remedies: 

–  eliminate branches 
–  code motion can increase block size 
–  block can contain out-branches with low probability 
–  predicated execution 
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Branch Elimination 

•  Example: 

    comp R0 R1 
    bne  L1: 
    bra  L2: 
L1: . . . 
    . . . 

L2: . . . 

    comp R0 R1 
    beq  L2: 

L1: . . . 
    . . . 

L2: . . . 
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Code Motion 

I1 I1 

I1 

c1 

I1 
c2 

I2 I3 

c2 

c1 
I1 I3 

c1 

I1 I2 

Code motion can increase window sizes and eliminate subtrees  
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IF (a>0) THEN 
   b=a 
ELSE 
   b=-a 
ENDIF 

p = a>0 
p: b=a 
p: b=-a 

; assignment of predicate 
; executed if predicate true 
; executed if predicate false 

Predicated Execution 

Predication 
•  increases the window size for analyzing and exploiting parallelism 
•  increases the number of instructions “executed” 
These are opposite demands! 

Compare this technique to conditional vectorization  
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ind = i0 
. . . 
ind = ind+1 
. . . 
ind = ind+1 

dependence 

dependence 

ind = i0 
. . . 
ind = i0+1 
. . . 
ind = i0+2 

sum = sum+expr1 
. . . 
sum = sum+expr2 
. . . 
sum = sum+expr3 
. . . 
sum = sum+expr4 

dependence 

dependence 

s1=expr1 
. . . 
s1=s1+expr2 
. . . 
s2=expr3 
. . . 
s2=s2+expr4 
. . . 
sum=sum+s1+s2 

dependence 

shaded blocks of statements are independent of each other and can 
be executed as parallel instructions 

Dependence-removing ILP 
Techniques 
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Speculative ILP 
Speculation is performed by the architecture in various forms 

–  Superscalar processors: compiler only has to deal with the 
performance model. ISA is the same as for non-speculative 
processors 

–  Multiscalar processors: (research only) compiler defines tasks that 
the hardware can try execute speculatively in parallel. Other than 
task boundaries, the ISA is the same.  

    References: 
•  Task Selection for a Multiscalar Processor, T. N. Vijaykumar and 

Gurindar S. Sohi, The 31st International Symposium on 
Microarchitecture (MICRO-31), pp. 81-92, December 1998.  

•  Reference Idempotency Analysis: A Framework for Optimizing 
Speculative Execution, Seon-Wook Kim, Chong-Liang Ooi, Rudolf 
Eigenmann, Babak Falsafi, and T.N. Vijaykumar,, In Proc. of 
PPOPP'01, Symposium on Principles and Practice of Parallel 
Programming, 2001.  

EE663, Spring 2012 Slide 146 



EE663, Spring 2004 Slide 147 

Compiler Model of Explicit 
Specluative Parallel Execution 

(Multicalar Processor) 
•  Overall Execution:  speculative 

threads choose and start the 
execution of any predicted next 
thread. 

•  Data Dependence and Control 
Flow Violations lead to roll-
backs. 

•  Final Execution: satisfies all 
cross-segment flow and control 
dependences.  

•  Data Access: Writes go to 
thread-private speculative 
storage. Reads read from 
ancestor thread or memory. 

•  Dependence Tracking: Data 
Flow and Control Flow 
dependences are detected 
directly. Lead to roll-back. Anti 
and Output dependences are 
satisfied via speculative 
storage. 

•  Segment Commit: Correctly 
executed threads (I.e., their final 
execution) commit their 
speculative storage to the 
memory, in sequential order. 


