
EE663, Spring 2012 Slide 1

EE663: Optimizing Compilers

Prof. R. Eigenmann
Purdue University

School of Electrical and Computer Engineering
Spring 2012

https://engineering.purdue.edu/~eigenman/ECE663/

I. Motivation and Introduction:
Optimizing Compilers are in the Center of the

(Software) Universe

Today Tomorrow

Workstation
Multicores

HPC Systems

Problem
Specification

Language

Globally
Distributed/Cloud

Resources

They translate increasingly advanced human interfaces (programming
languages) onto increasingly complex target machines

Tr
an

sl
at

or

 G
ra

nd

C
ha

lle
ng

e

Processors have multiple cores. Parallelization is a key optimization.
EE663, Spring 2012 Slide 2

C, C++,
Java,
Fortran

Human (programming)
language

Machine architecture

Issues in Optimizing /
Parallelizing Compilers

The Goal:
•  We would like to run standard (C, C++, Java,

Fortran) programs on common parallel
computers

leads to the following high-level issues:
•  How to detect parallelism?
•  How to map parallelism onto the machine?
•  How to create a good compiler architecture?

EE663, Spring 2012 Slide 3

Detecting Parallelism

•  Program analysis techniques
•  Data dependence analysis
•  Dependence removing techniques
•  Parallelization in the presence of

dependences
•  Runtime dependence detection

EE663, Spring 2012 Slide 4

Mapping Parallelism onto the
Machine

•  Exploiting parallelism at many levels
–  Multiprocessors and multi-cores (our focus)
–  Distributed computers (clusters or global

networks)
–  Heterogeneous architectures
–  Instruction-level parallelism
–  Vector machines

•  Exploiting memory organizations
–  Data placement
–  Locality enhancement
–  Data communication

EE663, Spring 2012 Slide 5

EE663, Spring 2004 Slide 6

Architecting a Compiler

•  Compiler generator languages and tools
•  Internal representations
•  Implementing analysis and transformation

techniques
•  Orchestrating compiler techniques (when to

apply which technique)
•  Benchmarking and performance evaluation

Parallelizing Compiler Books and
Survey Papers

Books:
•  Michael Wolfe: High-Performance Compilers for Parallel Computing (1996)
•  Utpal Banerjee: several books on Data Dependence Analysis and Transformations
•  Ken Kennedy, John Allen: Optimizing Compilers for Modern Architectures: A

Dependence-based Approach (2001)
•  Zima, H. and Chapman, B., Supercompilers for parallel and vector computers (1990)
•  Scheduling and automatic Parallelization, Darte, A., Robert Y., and Vivien, F., (2000)

Survey Papers:
•  Rudolf Eigenmann and Jay Hoeflinger, Parallelizing and Vectorizing Compilers, Wiley

Encyclopedia of Electrical Engineering, John Wiley &Sons, Inc., 2001
•  Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua. Automatic

Program Parallelization. Proceedings of the IEEE, 81(2), February 1993.
•  David F. Bacon, Susan L. Graham, Compiler transformations for high-performance

computing, ACM Computing Surveys (CSUR), Volume 26, Issue 4, December 1994,
Pages: 345 - 420,1994

EE663, Spring 2012 Slide 7

Course Approach
There are many schools on optimizing compilers.

Our approach is performance-driven.
We will discuss:

–  Performance of parallelization techniques
–  Analysis and Transformation techniques in the

Cetus compiler (for multiprocessors/cores)
–  Additional transformations (for GPGPUs and other

architectures)
–  Compiler infrastructure considerations

EE663, Spring 2012 Slide 8

The Heart of Automatic
Parallelization

Data Dependence Testing

If a loop does not have data dependences
between any two iterations then it can be
safely executed in parallel

In science/engineering applications, loop
parallelism is most important. In non-
numerical programs other control structures
are also important

EE663, Spring 2012 Slide 9

Data Dependence Tests:
Motivating Examples

Statement Reordering
can these two statements be
swapped?

DO i=1,100,2
 B(2*i) = ...
 ... = B(3*i)
ENDDO

A data dependence exists between two adjacent data references iff:
•  both references access the same storage location and
•  at least one of them is a write access

DD testing is important not just for
detecting parallelism

Loop Parallelization
Can the iterations of this
loop be run concurrently?

DO i=1,100,2
 B(2*i) = ...
 ... = B(2*i) +B(3*i)
ENDDO

DD testing is needed to detect
parallelism

EE663, Spring 2012 Slide 10

EE663, Spring 2004 Slide 11

Data Dependence Tests: Concepts

Terms for data dependences between statements of loop iterations.
•  Distance (vector): indicates how many iterations apart are source

and sink of dependence.
•  Direction (vector): is basically the sign of the distance. There are

different notations: (<,=,>) or (-1,0,+1) meaning dependence (from
earlier to later, within the same, from later to earlier) iteration.

•  Loop-carried (or cross-iteration) dependence and non-loop-carried
(or loop-independent) dependence: indicates whether or not a
dependence exists within one iteration or across iterations.
–  For detecting parallel loops, only cross-iteration dependences matter.
–  equal dependences are relevant for optimizations such as statement

reordering and loop distribution.

EE663, Spring 2004 Slide 12

Data Dependence Tests: Concepts
•  Iteration space graphs: the un-abstracted form of a dependence

graph with one node per statement instance.

 Example:

DO i=1,n
 DO j=1,m
 a(i,j) = a(i-1,j-2)+b(I,j)
 ENDDO
ENDDO

i

j

 order

EE663, Spring 2004 Slide 13

Data Dependence Tests:
Formulation of the

Data-dependence problem
DO i=1,n
 a(4*i) = . . .
 . . . = a(2*i+1)
ENDDO

the question to answer:
can 4*i1 ever be equal to 2*i2+1 within i1, i2 ∈[1,n] ?

Let us generalize a bit: given
•  two subscript functions f and g, and
•  loop bounds lower, upper,
Does
 f(i1) = g(i2) have a solution such that
 lower ≤ i1, i2 ≤ upper ?

Note that the iterations at which the two expressions are equal
may differ. To express this fact, we choose the notation i1, i2.

This course would now be finished if:

•  the mathematical formulation of the data dependence
problem had an accurate and fast solution, and

•  there were enough loops in programs without data
dependences, and

•  dependence-free code could be executed by today’s
parallel machines directly and efficiently.

•  engineering these techniques into a production
compiler were straightforward.

There are enough hard problems to fill several courses!

EE663, Spring 2012 Slide 14

II. Performance of Basic
Automatic Program

Parallelization

EE663, Spring 2012 Slide 15

Two Decades of Parallelizing
Compilers

A Performance study at the beginning of the 90es (Blume study)
Analyzed the performance of state-of-the-art parallelizers and
vectorizers using the Perfect Benchmarks.

William Blume and Rudolf Eigenmann, Performance Analysis of
Parallelizing Compilers on the Perfect Benchmarks Programs, IEEE
Transactions on Parallel and Distributed Systems, 3(6), November 1992,
pages 643--656.

EE663, Spring 2012 Slide 16

Good reasons for starting two decades back:
•  We will learn simple techniques first.
•  We will see how parallelization techniques have evolved
•  We will see that extensions of the important techniques back then are still the

important techniques today.

Overall Performance
of parallelizers in 1990

EE663, Spring 2012 Slide 17

Speedup on
8 processors
with 4-stage
vector units

Performance of Individual Techniques

EE663, Spring 2012 Slide 18

Transformations measured in
the “Blume Study”

•  Scalar expansion
•  Reduction parallelization
•  Induction variable substitution
•  Loop interchange
•  Forward Substitution
•  Stripmining
•  Loop synchronization
•  Recurrence substitution

EE663, Spring 2012 Slide 19

Scalar Expansion
DO j=1,n
 t = a(j)+b(j)
 c(j) = t + t2

ENDDO

DO PARALLEL j=1,n
PRIVATE t
 t = a(j)+b(j)
 c(j) = t + t2

ENDDO

DO PARALLEL j=1,n
 t0(j) = a(j)+b(j)
 c(j) = t0(j) + t0(j)2

ENDDO

Privatization

Expansion
We assume a shared-memory model:

•  by default, data is shared, i.e., all
processors can see and modify it
•  processors share the work of
parallel loops

flow

anti

output

EE663, Spring 2012 Slide 20

Parallel Loop Syntax and
Semantics in OpenMP

!$OMP PARALLEL PRIVATE(<private data>)
 <preamble code>
!$OMP DO
DO i = lb, ub

 <loop body code>

ENDDO
!$OMP END DO
 <postamble code>
!$OMP END PARALLEL

Same code executed by all participating processors (threads)

work (iterations) shared by participating processors (threads)

EE663, Spring 2012 Slide 21

#pragma omp parallel for

for (i=lb; i<=ub; i++) {

 <loop body code>

}

Reduction Parallelization

DO j=1,n
 sum = sum + a(j)

ENDDO

!$OMP PARALLEL, PRIVATE (s)
s = 0
!$OMP DO
DO j=1,n
 s = s + a(j)
ENDDO
!$OMP ENDDO
!$OMP ATOMIC
 sum=sum+s
!$OMP END PARALLEL !$OMP PARALLEL DO

!$OMP+REDUCTION(+:sum)
DO j=1,n
 sum = sum + a(j)

ENDDO

EE663, Spring 2012 Slide 22

flow

anti

Induction Variable Substitution
ind = ind0
DO j = 1,n
 a(ind) = b(j)
 ind = ind+k
ENDDO

ind = ind0
DO PARALLEL j = 1,n
 a(ind0+k*(j-1)) = b(j)
ENDDO

Note, this is the reverse of strength reduction, an important
transformation in classical (code generating) compilers.

real d(20,100)
DO j=1,n
 d(1,j)=0
ENDDO

loop:
 ...
R0 ← &d+20*j
(R0) ← 0
...
jump loop

R0 ← &d
loop:
 ...
(R0) ← 0
...
R0 ← R0+20
jump loop

EE663, Spring 2012 Slide 23

flow
dependence

Forward Substitution
m = n+1
…
DO j=1,n
 a(j) = a(j+m)

ENDDO

m = n+1
…
DO j=1,n
 a(j) = a(j+n+1)

ENDDO

a = x*y
b = a+2
c = b + 4

a = x*y
b = x*y+2
c = x*y + 6

dependences no dependences

EE663, Spring 2012 Slide 24

Stripmining

DO j=1,n
 a(j) = b(j)

ENDDO

DO i=1,n,strip
 DO j=i,min(i+strip-1,n)
 a(j) = b(j)
 ENDDO

ENDDO

There are many variants of stripmining
(sometimes called loop blocking)

1 n

strip

EE663, Spring 2012 Slide 25

Loop Synchronization

DO j=1,n
 a(j) = b(j)
 c(j) = a(j)+a(j-1)

ENDDO

DOACROSS j=1,n
 a(j) = b(j)
 post(current_iteration)
 wait(current_iteration-1)
 c(j) = a(j)+a(j-1)

ENDDO

EE663, Spring 2012 Slide 26

Basic idea of the recurrence solver:

Recurrence Substitution
DO =1,n
 a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2)

ENDDO

call rec_solver(a(1),n,c0,c1,c2,c3)

DO j=1,40
 a(j) = a(j) + a(j-1)
ENDDO

DO j=1,10
 a(j) = a(j) + a(j-1)
ENDDO

DO j=11,20
 a(j) = a(j) + a(j-1)
ENDDO

DO j=21,30
 a(j) = a(j) + a(j-1)
ENDDO

DO j=31,40
 a(j) = a(j) + a(j-1)
ENDDO

Error: 0 ∆a(10) ∆a(10)+∆a(20) ∆a(10)+∆a(20)+∆a(30)

EE663, Spring 2012 Slide 27

DO j= 1,m
 DO i=1,n
 a(i,j) =a(i,j)+a(i,j-1)

 ENDDO
ENDDO

Loop Interchange

DO i= 1,n
 DO j=1,m
 a(i,j) = a(i,j)+a(i,j-1)
 ENDDO
ENDDO

•  stride-1 references increase cache locality
–  read: increase spatial locality
–  write: avoid false sharing

•  scheduling of outer loop is important (consider original loop nest):
–  cyclic: no locality w.r.t. to i loop
–  block schedule: there may be some locality
–  dynamic scheduling: chunk scheduling desirable

•  cache organization is important
•  parallelism at outer position reduces loop fork/join overhead

EE663, Spring 2012 Slide 28

Effect of Loop Interchange
Example: speedups of the most time-consuming loops

in the ARC2D benchmark on 4-core machine

0

2

4

6

8

10

STEPFX
DO230

STEPFX
DO210

 XPENTA
DO11

FILERX
DO39

Speedup

loop interchange applied in the
process of parallelization

EE663, Spring 2012 Slide 29

Execution Scheme for Parallel Loops
1. Architecture supports parallel loops. Example: Alliant

FX/8 (1980es)
–  machine instruction for parallel loop
–  HW concurrency bus supports loop scheduling

a=0
! DO PARALLEL
DO i=1,n
 b(i) = 2
ENDDO
b=3

store #0,<a>
load <n>,D6
sub 1,D6
load &b,A1
cdoall D6
 store #2,A1(D7.r)
endcdoall
store #3,

D7 is reserved
for the loop
variable.
Starts at 0.

EE663, Spring 2012 Slide 30

Execution Scheme for Parallel Loops

2. Microtasking scheme (dates back to early
IBM mainframes)

p1 p2 p3 p4
sequential

sequential

sequential

parallel

parallel

problem:
loop startup
must be very fast

init_helper_tasks

wakeup_helpers

wakeup_helpers
sleep_helpers

sleep_helpers

microtask startup: 1 µs
pthreads startup: up to 100 µs

EE663, Spring 2012 Slide 31

Compiler Transformation and Runtime
Function for the Microtasking Scheme
a=0
! DO PARALLEL
DO i=1,n
 b(i) = 2
ENDDO
b=3

call init_microtasking() // once at program start
...
a=0
call loop_scheduler(loopsub,i,1,n,b)
b=3

subroutine loopsub(mytask,lb,ub,b)
DO i=lb,ub
 b(i) = 2
ENDDO
END

Master task
 loop_scheduler:
 partition loop iterations
 wakeup
 call loopsub(...)
 barrier (all flags reset)
 return

Helper task
 loop:
 wait for flag
 call loopsub(id,lb,ub,sh_var)
 reset flag

Helper 1:
loopsub
 lb,ub
sh_var

flag

Control blocks
(shared data)

EE663, Spring 2012 Slide 32

III. Performance of Advanced
Parallelization

EE663, Spring 2012 Slide 33

Manual Improvements of the
Perfect Benchmarks (1995)

EE663, Spring 2012 Slide 34

Rudolf Eigenmann, Jay
Hoeflinger, and David Padua,
On the Automatic
Parallelization of the
Perfect Benchmarks.
 IEEE Transactions on
Parallel and Distributed
Systems,
volume 9, number 1,
January 1998,
pages 5-23.

Same
information as
on Slide 17

a eliminated file I/O
b parallelized random number generator

Performance of Individual
Techniques in Manually

Improved Programs (1995)

EE663, Spring 2012 Slide 35
Performance loss when disabling individual techniques (Cedar machine)

Overall Performance of the
Cetus and ICC Compilers (2011)

EE663, Spring 2012 Slide 36

NAS (Class A) Benchmarks on 8-core x86 processor

!

"

#

$

%

&

'

(

)

*+ ,- ./ 0+ 12 34 5- 2/

!"
##
$%

"

26789: ,6;<=>4?;<?6@ 5A@6:BC9=6@>+<?6@ /7AD8:6BC9=6@>+<?6@ .EF878G9::H>+<?6@ 1,,>/979::6: I9?@>/979::6:

Performance of Individual
Cetus Techniques (2011)

EE663, Spring 2012 Slide 37

!"#$%&'()*+,$+#-.-+'/0%%-%&1$'&"+)*+$2%&+3)/0"30$.)4+$%(5&5

6

7

8

9

:

;

<

=

>

?@ AB */ C@ DE !F GB E/

!"
##
$%

"

E(.2"%&#)4+$%(5&5)HII D+%&+&+3)HII 4%&$5)"II /0&J$'&1$''&"+)HII 400$()K-LM#'&"+)HII D+LM#'&"+)HII D+'-0#,$+3-)HII @&%&+3)HII 4%%)H+

NAS Benchmarks (Class A) on 8-core x86 processor

IV. Analysis and
Transformation Techniques

•  1 Data-dependence analysis
•  2 Parallelism enabling transformations
•  3 Techniques for multiprocessors/multicores
•  4 Advanced program analysis
•  5 Dynamic decision making
•  6 Techniques for vector architectures
•  7 Techniques for heterogeneous multicores
•  8 Techniques distributed-memory machines

EE663, Spring 2012 Slide 38

IV.1 Data Dependence Testing

DO i=1,n
 a(4*i) = . . .
 . . . = a(2*i+1)
ENDDO

the question to answer:
can 4*i ever be equal to 2*i+1 within i ∈[1,n] ?

In general: given
•  two subscript functions f and g and
•  loop bounds lower, upper.
Does
 f(i1) = g(i2) have a solution such that
 lower ≤ i1, i2 ≤ upper ?

Earlier, we have considered the simple case of a
1-dimensional array enclosed by a single loop:

EE663, Spring 2012 Slide 39

DDTests: doubly-nested loops

•  Multiple loop indices:
DO i=1,n
 DO j=1,m
 X(a1*i + b1*j + c1) = . . .
 . . . = X(a2*i + b2*j + c2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

Almost all DD tests expect the coefficients ax to be integer constants.
Such subscript expressions are called affine.

EE663, Spring 2012 Slide 40

DDTests: even more complexity

•  Multiple loop indices, multi-dimensional array:
DO i=1,n
 DO j=1,m
 X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = . . .
 . . . = X(a2*i2 + b2*j2 + c2, d2*i2 +e2*j2 + f2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
d1*i1 - d2*i2 + e1*j1 - e2*j2 = f2 - f1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

EE663, Spring 2012 Slide 41

Data Dependence Tests:
The Simple Case

Note: variables i1, i2 are integers → diophantine equations.

Equation a * i1 - b* i2 = c has a solution if and only iff
 gcd(a,b) (evenly) divides c

 in our example this means: gcd(4,2)=2, which does not
divide 1 and thus there is no dependence.

If there is a solution, we can test if it lies within the loop
bounds. If not, then there is no dependence.

EE663, Spring 2012 Slide 42

Euklid Algorithm: find gcd(a,b)
 Repeat
 a ← a mod b
 swap a,b
 Until b=0

Performing the GCD Test
•  The diophantine equation
 a1*i1 + a2*i2 +...+ an*in = c
has a solution iff gcd(a1,a2,...,an) evenly divides c

Examples:
 15*i +6*j -9*k = 12 has a solution gcd=3
 2*i + 7*j = 3 has a solution gcd=1
 9*i + 3*j + 6*k = 5 has no solution gcd=3

→The resulting a is the gcd

for more than two numbers:
gcd(a,b,c) = (gcd(a,gcd(b,c))

EE663, Spring 2012 Slide 43

Other Data Dependence Tests

•  The GCD test is simple but not accurate
•  Other tests

–  Banerjee(-Wolfe) test: widely used test
–  Power Test: improvement over Banerjee test
–  Omega test: “precise” test, most accurate for

linear subscripts
–  Range test: handles non-linear and symbolic

subscripts
–  many variants of these tests

EE663, Spring 2012 Slide 44

The Banerjee(-Wolfe) Test

Basic idea:
if the total subscript range accessed by ref1

does not overlap with the range accessed
by ref2, then ref1 and ref2 are
independent.

DO j=1,100 ranges accesses:
 a(j) = … [1:100]
 … = a(j+200) [201:300]
ENDDO  independent

EE663, Spring 2012 Slide 45

Mathematical Formulation of the
Test – Banerjee’s Inequalities

 j1-j2 = 200

Min: 1-100=-99
Max: 100-1=99

EE663, Spring 2012 Slide 46

The general case of a doubly-nested loop and
single subscript, as shown on Slide 40:

a1*i1-a2*i2 + b1*j1-b2*j2 = c2-c1

Min: a1-a2*n
Max: a1*n-a2

Min: b1-b2*m
Max: b1*n-b2

Assuming positive
coefficients

Multiple dimensions: apply test separately on each subscript or linearize

Banerjee(-Wolfe) Test continued

Weakness of the test:

DO j=1,100 ranges accessed:
 a(j) = … [1:100]
 … = a(j+5) [6:105]
ENDDO  no dependence ?

We did not take into consideration that only loop-carried
dependences matter for parallelization.

A loop-carried flow dependence only exists, if a read in some
iteration, j1, conflicts with a write in some later iteration, j2> j1

Consider this flow dependence

EE663, Spring 2012 Slide 47

Using Dependence Direction Information
in the Banerjee(-Wolfe) Test

Idea for overcoming the weakness:
for loop-carried dependences, make use of the fact

that j in ref2 is greater than in ref1

DO j=1,100
 a(j) = …
 … = a(j+5)
ENDDO

This is commonly referred to as the
Banerjee test with direction vectors.

Ranges accessed by
 iteration j1 and any other
 iteration j2, where j1 < j2 :
 [j1]
 [j1+6:105]
 Independent for “>” direction

Clearly, this loop has a
dependence. But, it is
an anti-dependence
from a(j+5) to a(j)

Still considering the potential flow
dependence from a(j) to a(j+5)

EE663, Spring 2012 Slide 48

Considering direction vectors can increase the complexity of the DD test
substantially. For long vectors (corresponding to deeply-nested
loops), there are many possible combinations of directions.

A possible algorithm:
1.  try (*,*…*) , i.e., do not consider directions
2.  (if not independent) try (<,*,*…*), (=,*,*…*)
3.  (if still not independent) try (<,<,*…*),(<,>,*…*) ,(<,=,*…*)

 (=,=,*…*), (=,<,*…*)
. . .
(This forms a tree)

DD Testing with Direction Vectors

*, * , . . . , *
= = =
< < <
 > >

(d1,d2,…,dn)

EE663, Spring 2012 Slide 49

Data-dependence Test Driver

Slide 50

procedure DataDependenceAnalysis(PROG)
input : Program representing all source files: PROG
output : Data dependence graph containing dependence arcs DDG
// Collect all FOR loops meeting eligibility
// Checks: Canonical, FunctionCall, ControlFlowModifier
ELIGIBLE LOOPS = getOutermostEligibleLoops(PROG)
foreach LOOP in ELIGIBLE LOOPS

// Obtain lower bounds, upper bounds and loop steps
// for this loop and all enclosed loops i.e. the loop-nest
// Substitute symbolic information if available,
LOOP_INFO = collectLoopInformation(LOOP and enclosed nest)
// Collect all array access expressions appearing within the
// body of this loop, this includes enclosed loops and non-perfectly
// nested statements
ACCESSES = collectArrayAccesses(LOOP and enclosed nest)
// Traverse all array accesses, test relevant pairs and
// create a set of dependence arcs for the loop-nest
LOOP_DDG = runDependenceTest(LOOP_INFO, ACCESSES)
// Add loop dependence graph to the program-wide DDG
// The program-wide DDG is initially empty
DDG += LOOP_DDG

// return the program-wide data dependence graph once all loops are done
return DDG

Slide 51

procedure runDependenceTest(LOOP_INFO, ACCESSES)
input : Loop information for the current loop nest LOOP_INFO

 List of array access expressions, ACCESSES
output : Loop data dependence graph LOOP_DDG
foreach ARRAY_1 in ACCESSES of type write

// Obtain alias information i.e. aliases to this array name
// Alias information in Cetus is generated through points-to analysis
ALIAS_SET = getAliases(ARRAY_1)
// Collect all expressions/references to the same array from the entire list of accesses
TEST_LIST = getOtherReferences(ALIAS_SET, ACCESSES)
foreach ARRAY_2 in TEST_LIST

// Obtain the common loops enclosing the pair
COMMON NEST = getCommonNest(ARRAY_1, ARRAY_2)
// Possibly empty set of direction vectors under which
// dependence exists is returned by the test
DV_SET = testAccessPair(ARRAY_1, ARRAY_2, COMMON_NEST, LOOP_INFO)
foreach DV in DV_SET

// Create arc from source to sink
DEP_ARC = buildDependenceArc(ARRAY_1, ARRAY_2, DV)
// Build the loop dependence graph by accumulating all arcs
LOOP_DDG += DEP ARC

// All expressions have been tested, return the loop dependence graph
return LOOP_DDG

Data-dependence Test Driver (continued)

Slide 52

procedure testAccessPair(A1, A2, COMMON_NEST, LOOP_INFO)
input : Pair of array accesses to be tested A1 and A2

 Nest of common enclosing loops COMMON NEST
 Information for these loops LOOP INFO

output : Possibly empty set of direction vectors under
 which dependence exists DV SET

// Partition the subscripts of the array accesses into dimension pairs
// Coupled subscripts may be handled
PARTITIONS = partitionSubscripts(A1, A2, COMMON_NEST)
foreach PARTITION in PARTITIONS

// Depending on the number of loop index variables in the partition,
// use the corresponding test.
if(ZIV) // zero index variables ZIV

DVs = simpleZIVTest(PARTITION)
else // single or multi-loop index variables: SIV, MIV

// traverse and prune over tree of direction vectors, collect DVs where
// dependence exists (traversal not shown here)
foreach DV in DV_TREE using prune

// In Cetus, the MIV test is performed using Banerjee or Range test
DVs += MIVTest(PARTITION, DV, COMMON_NEST, LOOP_INFO)

// Merge DVs for all partitions
DV_SET = merge(DVs)
return DV_SET

Data-dependence Test Driver (continued)

Non-linear and Symbolic DD Testing

Weakness of most data dependence tests:
subscripts and loop bounds must be affine,
i.e., linear with integer-constant coefficients

Approach of the Range Test:
capture subscript ranges symbolically
compare ranges: find their upper and lower bounds

by determining monotonicity. Monotonically
increasing/decreasing ranges can be compared by
comparing their upper and lower bounds.

EE663, Spring 2012 Slide 53

The Range Test
Basic idea :
1. Find the range of array accesses made in a given

loop iteration j => r(j).
2. If r(j) does not overlap with r(j+1) then there is no

cross-iteration dependence

Example: testing independence of the outer loop:

DO i=1,n
 DO j=1,m
 A(i*m+j) = 0
 ENDDO
ENDDO

range of A accessed in iteration ix: [ix*m+1:(ix+1)*m]

range of A accessed in iteration ix+1: [(ix+1)*m+1:(ix+2)*m]

ubx

lbx+1
ubx < lbx+1 ⇒ no cross-iteration dependence

EE663, Spring 2012 Slide 54

Symbolic comparison of ranges r1 and r2:
max(r1)<min(r2) OR min(r1)>max(r2) => no overlap

Range Test continued
DO i1=L1,U1
 ...
 DO in=Ln,Un
 A(f(i1,...in)) = ...
 ... = A(g(i1,...in))
 ENDDO
 ...
ENDDO

Assume f,g are monotonically increasing w.r.t. all ix:
 find upper bound of access range at loop k, 1<k<n:
 successively substitute ix with Ux, x={n,n-1,...,k-1}
 lowerbound is computed analogously

If f,g are monotonically decreasing w.r.t. some iy,
then substitute Ly when computing the upper
bound.

Determining monotonicity: consider d = f(...,ik,...) - f(...,ik-1,...)
 If d>0 (for all values of ik) then f is monotonically increasing w.r.t. k
 If d<0 (for all values of ik) then f is monotonically decreasing w.r.t. k

What about symbolic coefficients?
•  in many cases they cancel out
•  if not, find their range (i.e., all possible values they can assume at this point
in the program), and replace them by the upper or lower bound of the range.

we need
 range

analysis

we need powerful expression
manipulation and comparison

utilities

EE663, Spring 2012 Slide 55

Handling Non-contiguous
Ranges

DO i1=1,u1
 DO i2=1,u2
 A(n*i1+m*i2)) = …
 ENDDO
ENDDO

The basic Range Test finds
independence
of the outer loop
 if n >= u2 and m=1
But not
 if n=1 and m>=u1

Issues:
•  legality of loop interchanging,
•  change of parallelism as a result of loop interchanging

Idea:
 - temporarily (during program analysis) interchange the loops,
 - test independence,
 - interchange back

EE663, Spring 2012 Slide 56

Some Engineering Tasks and
Questions for DD Test Pass Writers

- Start with the simple case: linear (affine) subscripts, single nests with 1-dim arrays. Subscript
and loop bounds are integer constants. Stride 1 loop, lower bound =1

- Deal with multiple array dims and loop nests
- Add capabilities for non-stride-1 loops and lower bounds ≠1
- How to deal with symbolic subscript coefficients and bounds
- Ignore dependences in private variables and reductions
- Generate DD vectors
- Mark parallel loops
- Things to think about:
 -- how to handle loop-variant coefficients
 -- how to deal with private, reduction, induction variables
 -- how to represent DD information
 -- how to display the DD info
 -- how to deal with non-parallelizable loops (IO op, function calls, other?)
 -- how to find eligible DO loops?
 -- how to find eligible loop bounds, array subscripts?
 -- what is the result of the pass? Generate DD info or set parallel loop flags?
 -- what symbolic analysis capabilities are needed?

EE663, Spring 2012 Slide 57

Data-Dependence Test, References
•  Banerjee/Wolfe test

–  M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel
Processing", Int. J. of Parallel Programming, Vol.16, No.2, pp.137-178,
1987"

•  Power Test"
–  M. Wolfe and C.W. Tseng, The Power Test for Data Dependence, IEEE

Transactionson Parallel and Distributed Systems, IEEE Computer Society,
3(5), 591-601,1992.

•  Range test
–  William Blume and Rudolf Eigenmann. Non-Linear and Symbolic Data

Dependence Testing, IEEE Transactions of Parallel and Distributed
Systems, Volume 9, Number 12, pages 1180-1194, December 1998.

•  Omega test
–  William Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence. Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing,1991

•  I Test
–  Xiangyun Kong, David Klappholz, and Kleanthis Psarris, "The I Test: A New

Test for Subscript Data Dependence," Proceedings of the 1990 International
Conference on Parallel Processing, Vol. II, pages 204-211, August 1990.

EE663, Spring 2012 Slide 58

IV.2 Parallelism Enabling
Techniques

EE663, Spring 2012 Slide 59

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

scalar privatization array privatization

loop-carried
anti dependence

Advanced Privatization

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

EE663, Spring 2012 Slide 60

Array Privatization
Capabilities needed for

Array Privatization
•  array Def-Use Analysis
•  combining and intersecting

subscript ranges
•  representing subscript

ranges
•  representing conditionals

under which sections are
defined/used

•  if ranges are too complex to
represent: overestimate
Uses, underestimate Defs

k = 5
DO j=1,n
 t(1:10) = A(j,1:10)+B(j)
 C(j,iv) = t(k)
 t(11:m) = A(j,11:m)+B(j)
 C(j,1:m) = t(1:m)
ENDDO

DO j=1,n
 IF (cond(j))
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
 ENDIF
 D(j,1) = t(1)
ENDDO

EE663, Spring 2012 Slide 61

Array Privatization continued

Array privatization algorithm:
•  For each loop nest:

–  iterate from innermost to outermost loop:
•  for each statement in the loop

–  Find array definitions; add them to the existing
definitions in this loop.

–  find array uses; if they are covered by a definition,
mark this array section as privatizable for this loop,
otherwise mark it as upward-exposed in this loop;

•  aggregate defined and upward-exposed uses (expand
from range per-iteration to entire iteration space); record
them as Defs and Uses for this loop

EE663, Spring 2012 Slide 62

Some Engineering Tasks and
Questions for Privatization Pass Writers

•  Start with scalar privatization
•  Next step: array privatization with simple ranges (contiguous; no range

merge) and singly-nested loops
•  Deal with multiply-nested loops (-> range aggregation)
•  Add capabilities for merging ranges
•  Implement advanced range representation (symbolic bounds, non-

contiguous ranges)
•  Deal with conditional definitions and uses (too advanced for this course)
•  Things to think about

–  what symbolic analysis capabilities are needed?
–  how to represent advanced ranges?
–  how to deal with loop-variant subscript terms?
–  how to represent private variables?

EE663, Spring 2012 Slide 63

Array Privatization,
References

•  Peng Tu and D. Padua. Automatic Array Privatization.
Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science 768, U. Banerjee, D. Gelernter, A.
Nicolau, and D. Padua (Eds.), Springer-Verlag, 1994. "

•  Zhiyuan Li, Array Privatization for Parallel Execution of Loops,
Proceedings of the 1992 ACM International Conference on
Supercomputing"

EE663, Spring 2012 Slide 64

!$OMP PARALLEL PRIVATE(s)
s=0
!$OMP DO
DO i=1,n
 s=s+A(i)
ENDDO
!$OMP ATOMIC
sum = sum+s
!$OMP END PARALLEL DO i=1,n

 sum = sum + A(i)
ENDDO

loop-carried
flow
dependence

Reduction
Parallelization

Note, OpenMP has a reduction clause,
only reduction recognition is needed:
!$OMP PARALLEL DO
!$OMP+REDUCTION(+:sum)
DO i=1,n
 sum = sum + A(i)
ENDDO

DO i=1,num_proc
 s(i)=0
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(my_proc)=s(my_proc)+A(i)
ENDDO
DO i=1,num_proc
 sum=sum+s(i)
ENDDO

Scalar Reduction

EE663, Spring 2012 Slide 65

Privatized reduction
implementation

Expanded reduction
implementation

DIMENSION sum(m),s(m)
!$OMP PARALLEL PRIVATE(s)
s(1:m)=0
!$OMP DO
DO i=1,n
 s(expr)=s(expr)+A(i)
ENDDO
!$OMP ATOMIC
sum(1:m) = sum(1:m)+s(1:m)
!$OMP END PARALLEL

DIMENSION sum(m)
DO i=1,n
 sum(expr) = sum(expr) + A(i)
ENDDO

Parallelizing Array Reductions
DIMENSION sum(m),s(m,#proc)
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 s(i,j)=0
ENDDO
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(expr,my_proc)=s(expr,my_proc)+A(i)
ENDDO
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 sum(i)=sum(i)+s(i,j)
ENDDO
ENDDO

Note, OpenMP 1.0 does not support such array reductions

Array Reductions (a.k.a. irregular or
histogram reductions)

EE663, Spring 2012 Slide 66

Privatized reduction
implementation

Expanded reduction
implementation

Recognizing Reductions

Recognition Criteria:
1.  the loop may contain one or more reduction

statements of the form X=X ⊗ expr ,	
�	
�where
•  X is either scalar or an array expression, a[sub]

(sub must be the same on LHS and RHS)
•  ⊗ is a reduction operation, such as +, *, min, max

2.  X must not be used in any non-reduction statement
of the loop, nor in expr

EE663, Spring 2012 Slide 67

Reduction
Recognition
Algorithm

Slide 68

procedure RecognizeSumReductions (L)
Input : Loop L
Output: reduction annotations for loop L, inserted in the IR

REDUCTION = {} // set of candidate reduction expressions
REF = {} // set of non-reduction variables referenced in L
foreach stmt in L

localREFs = findREF(stmt) // gather all variables referenced in stmt
if (stmt is AssignmentStatement)

candidate = lhs_expr(stmt)
increment = rhs_expr(stmt) – candidate // symbolic subtraction
if (!(baseSymbol(candidate) in findREF(increment))) // criterion1 is satisfied

REDUCTION = REDUCTION ∪ candidate
localREFs = findREF(increment) // all variables referenced in inc. expr.

REF = REF ∪ localREFs // collect non-reduction variables for criterion 2
foreach expr in REDUCTION

if (! (baseSymbol(expr) in REF)) // criterion 2 is satisfied
if (expr is ArrayAccess AND expr.subscript is loop-variant)

CreateAnnotation(sum-reduction, ARRAY, expr)
else

CreateAnnotation(sum-reduction, SCALAR, expr)
end procedure

Reduction Compiler Passes

Reduction recognition and parallelization
passes:

Induction variable recognition
Reduction recognition
Privatization
Data dependence test
Loop parallelization
<mapping passes>
Profitability decision
Reduction parallelization

compiler passes

recognizes and
annotates reduction
variables

performs the reduction
transformation

EE663, Spring 2012 Slide 69

Performance Considerations
for Reduction Parallelization

•  Parallelized reductions execute substantially more code than
their serial versions ⇒ overhead if the reduction (n) is small.

•  In many cases (for large reductions) initialization and sum-up
are insignificant.

•  False sharing can occur, especially in expanded reductions, if
multiple processors use adjacent array elements of the
temporary reduction array (s).

•  Expanded reductions exhibit more parallelism in the sum-up
operation.

•  Potential overhead in initialization, sum-up, and memory used
for large, sparse array reductions ⇒ compression schemes can
become useful.

EE663, Spring 2012 Slide 70

ind = k
DO i=1,n
 ind = ind + 2
 A(ind) = B(i)
ENDDO

loop-carried
flow
dependence

Parallel DO i=1,n
 A(k+2*i) = B(i)
ENDDO

Induction Variable Substitution

This is the simple case of an induction variable

EE663, Spring 2012 Slide 71

Generalized Induction Variables
ind=k
DO j=1,n
 ind = ind + j
 A(ind) = B(j)
ENDDO

Parallel DO j=1,n
 A(k+(j**2+j)/2) = B(j)
ENDDO

DO i=1,n
 ind1 = ind1 + 1
 ind2 = ind2 + ind1
 A(ind2) = B(i)
ENDDO

DO i=1,n
 DO j=1,i
 ind = ind + 1
 A(ind) = B(i)
 ENDDO
ENDDO

EE663, Spring 2012 Slide 72

Recognizing GIVs
•  Pattern Matching:

–  find induction statements in a loop nest of the form
iv=iv+expr or iv=iv*expr, where iv is an scalar integer.

–  expr must be loop-invariant or another induction variable
(there must not be cyclic relationships among IVs)

–  iv must not be assigned in a non-induction statement

•  Abstract interpretation: find symbolic increments
of iv per loop iteration

•  SSA-based recognition

EE663, Spring 2012 Slide 73

GIV Closed-form Computation and
Substitution Algorithm

Loop structure L0: stmt type

For j: 1..ub
…
S1: iv=iv+exp I
…
S2: loop using iv L
…
S3: stmt using iv U
…
Rof

Step1: find the increment rel. to start of loop L
FindIncrement(L)
 inc=0
 foreach si of type I,L
 if type(si)=I inc += exp
 else /* L */ inc+= FindIncrement(si)
 inc_after[si]=inc
 inc_into_loop[L]= ∑1

j-1(inc) ; inc may depend
 return ∑1

ub(inc) ; on j

Step 2: substitute IV
Replace (L,initval)
 val = initval+inc_into_loop[L]
 foreach si of type I,L,U
 if type(si)=L Replace(si,val)
 if type(si)=L,I val=initialval
 +inc_into_loop[L]
 +inc_after[si]
 if type(si)=U Substitute(si,iv,val)

Main:
totalinc = FindIncrement(L0)
Replace(L0,iv)
InsertStatement(“iv = iv+totalinc”)

For coupled GIVs: begin with independent iv.

Insert this
statement

If iv is live-out

EE663, Spring 2012 Slide 74

Induction Variables, References
•  B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris

Parallelizing Compiler. ACM Int. Conf. on Supercomputing (ICS'95),
June 1995. "

•  Mohammad R. Haghighat , Constantine D. Polychronopoulos, Symbolic
analysis for parallelizing compilers, ACM Transactions on Programming
Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996 "

•  Michael P. Gerlek , Eric Stoltz , Michael Wolfe, Beyond induction
variables: detecting and classifying sequences using a demand-driven
SSA form, ACM Transactions on Programming Languages and
Systems (TOPLAS), v.17 n.1, p.85-122, Jan. 1995"

EE663, Spring 2012 Slide 75

!$OMP PARALLEL DO
DO set=1,?
 i = ?
 j = ?
 setsize= ?
 DO k=0,setsize-1
 A(i+k,j+k)=A(i-1+k,j-1+k)
 ENDDO
ENDDO

!$OMP PARALLEL DO
DO set=1,9
 i = max(5-set,1)
 j = max(-3+set,1)
 setsize = min(4,5-abs(set-5))
 DO k=0,setsize-1
 A(i+k,j+k)=A(i-1+k,j-1+k)
 ENDDO
ENDDO

DO i=1,4
 DO j=1,6
 A(i,j)= A(i-1,j-1)
 ENDDO
ENDDO

j

i Iteration space graph:
Shared regions show sets of iterations in the
transformed code that can be executed in
parallel.

Loop Skewing

EE663, Spring 2012 Slide 76

DO i=2,n-1
 DO j=2,n-1
 A(i,j)= (A(i+1,j) +A(i-1,j)
 +A(i,j+1) +A(i,j-1))/4
 ENDDO
ENDDO

j

i

Loop Skewing for the
Wavefront Method

EE663, Spring 2012 Slide 77

DO j=4, n+n-2
DOALL i= max(2, n- j+ 1), min(n- 1, j- 2)

A(i, j- i) = (A(i+ 1, j- i) + A(i- 1, j- i)
 +A(i, j+ 1- i) + A(i, j- 1 +i)/4

ENDDO
ENDDO

Outer loop is serial
Inner loop is parallel

2

3

4

5
.
.
.

2 3 4 5 6 7 . . .

IV.3 Techniques for
Multiprocessors:

Mapping Parallelism to Shared-memory
Machines

EE663, Spring 2012 Slide 78

DO i=1,n
 A(i) = B(i)
ENDDO

DO i=1,n
 C(i) = A(i-1)+D(i)
ENDDO

DO i=1,n
 A(i) = B(i)
 C(i) = A(i-1) + D(i)
ENDDO

loop fusion

Loop Fusion and Distribution

•  Loop fusion is the reverse of loop distribution
•  Fusion reduces the loop fork/join overhead and enhances data affinity
•  Distribution inserts a barrier synchronization between parallel loops
•  Both transformations reorder computation
•  Legality: dependences in fused loop must be lexically forward

EE663, Spring 2012 Slide 79

loop distribution
 (fission)

DO i=1,n
 A(i) = B(i)+A(i-1)
 DO j=1,m
 D(i,j)=E(i,j)
 ENDDO
ENDDO

DO i=1,n
 A(i) = B(i)+A(i-1)
ENDDO

DOALL j=1,m
 DO i=1,n
 D(i,j)=E(i,j)
 ENDDO
ENDDO

•  enables
interchange
•  separates
out partial
paralleism

Loop Distribution Enables
Other Techniques

In a program with multiply-nested loops, there can be a large number of
possible program variants obtained through distribution and interchanging

EE663, Spring 2012 Slide 80

Enforcing Data Dependence
Criterion for correct transformation and execution of a

computation involving a data dependence with vector
v : (=,…<,…*)

 Let Ls be the outermost loop with non-“=” DD-direction :
–  Ls must be executed serially
–  The direction at Ls must be “<”

Same rule applies to all dependences

Note that a data dependence is defined with respect to an ordered
execution. For autoparallelization, this is the serial program order.

 User-defined, fully parallel loops by definition do not have cross-iteration
dependences. Legality rules for transforming already parallel programs are
different.

Ls

EE663, Spring 2012 Slide 81

Loop Interchange
Legality of Loop interchange and resulting parallelism can be
tested with the above rules:
After loop interchange, the two conditions must still hold.

EE663, Spring 2012 Slide 82

DO i=1,n
 DOALL j=1,m
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

DOALL j=1,m
 DO i=1,n
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

DOALL i=1,n
 DO j=1,m
 A(i,j) = A(i-1,j-1)
 ENDDO
ENDDO

DOALL j=1,m
 DO i=1,n
 A(i,j) = A(i-1,j-1)
 ENDDO
ENDDO

PARALLEL DO ij=1,n*m
 i = 1 + (ij-1) DIV m
 j = 1 + (ij-1) MOD m
 A(i,j) = B(i,j)
ENDDO

PARALLEL DO i=1,n
 DO j=1,m
 A(i,j) = B(i,j)
 ENDDO
ENDDO

loop
coalescing

Loop Coalescing
a.k.a. loop collapsing

Loop coalescing
•  can increase the number of iterations of a parallel loop

  load balancing
•  adds additional computation

  overhead

EE663, Spring 2012 Slide 83

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

loop
blocking

DO PARALLEL i1=1,n,block
 DO j=1,m
 DO i=i1,min(i1+block-1,n)
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
 ENDDO
ENDDO

Loop Blocking/Tiling

This is basically the same transformation as
stripmining, but followed by loop interchanging.

j

i

j

i

p1

p2

p3

p4

EE663, Spring 2012 Slide 84

Loop Blocking/
Tiling

continued

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

!$OMP PARALLEL
DO j=1,m
!$OMP DO
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
!$OMP ENDDO NOWAIT
ENDDO
!$OMP END PARALLEL

j

i

j

i

p1

p2

p3

p4

EE663, Spring 2012 Slide 85

Choosing the Block Size
The block size must be small enough so that all data references

between the use and the reuse fit in cache.

If the cache is shared, all cores use it simultaneously. Hence the
effective cache size appears smaller:

 block < cachesize / (r1+r2+3)*d*num_cores

Reference: Zhelong Pan, Brian Armstrong, Hansang Bae and Rudolf Eigenmann,
On the Interaction of Tiling and Automatic Parallelization, First International
Workshop on OpenMP (Wompat), 2005.

DO j=1,m
 DO k=1,block
 … (r1 data references)
 … = A(k,j) + A(k,j-d)
 … (r2 data references)
 ENDDO
ENDDO

Number of references made between the
access A(k,j) and the access A(k,j-d) when
referencing the same memory location:
(r1+r2+3)*d*block
 block < cachesize / (r1+r2+3)*d

EE663, Spring 2012 Slide 86

DO i=1,n
 A(i) = B(i)
ENDDO

PARALLEL DO (inter-cluster) i1=1,n,strip
 PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n)
 A(i) = B(i)
 ENDDO
ENDDO

strip mining
for multi-level
parallelism

Multi-level Parallelism from
Single Loops

M
P P P P

M
P P P P

M
P P P P

M
P P P P

M cluster

EE663, Spring 2012 Slide 87

References
•  High Performance Compilers for Parallel

Computing, Michale Wolfe, Addison-Wesley, ISBN
0-8053-2730-4.

•  Optimizing Compilers for Modern Architectures: A
Dependence-based Approach, Ken Kennedy and
John R. Allen, Morgan Kaufmann Publishers, ISBN
1558602860

EE663, Spring 2012 Slide 88

IV.4 Advanced Program
Analysis

EE663, Spring 2012 Slide 89

Interprocedural Analysis

•  Most compiler techniques work intra-
procedurally

•  Ideally, inter-procedural analyses and
transformations available

•  In practice: inter-procedural operation of basic
analysis works well

•  Inline expansion helps but no silver bullet

EE663, Spring 2012 Slide 90

Interprocedural Constant
Propagation

Making constant values of variables
known across subroutine calls

Subroutine A

 j = 150

 call B(j)

END

Subroutine B(m)

DO k=1,100
 X(i)=X(i+m)
ENDDO

END

knowing that m>100 allows this
loop to be parallelized

EE663, Spring 2012 Slide 91

An Algorithm for Interprocedural
Constant Propagation

Intra-procedural part:
determine jump functions for all subroutines

Subroutine X(a,b,c)
e = 10
d = b+2
call Y(c)
f = b*2
call Z(a,d,c,e,f)
END

JY,1 = c
JZ,1 = a (jump function of first parameter)
JZ,2 = b+2
JZ,3 = ⊥ (called bottom, meaning non-constant)
JZ,4 = 10
JZ,5 = ⊥

•  Mechanism for finding jump functions: (local) forward substitution and
 interprocedural MAYMOD information.
•  Here we assume the compiler supports jump functions of the form
 P+const (P is a subroutine parameter of the callee).

EE663, Spring 2012 Slide 92

Constant Propagation Algorithm:
Interprocedural Part

1.  initialize all formal parameters to the value T (called top = non yet known)
2.  for all jump functions:

–  if it is ⊥: set formal parameter value to ⊥ (called bottom = unknown)

–  if it is constant and the value of the formal parameter is the same
constant or T : set the value to this constant

3.  put all formal parameters on a work queue
4.  repeat: take a parameter from the queue until queue is empty

for all jump functions that contain this parameter:
•  determine the value of the target parameter of this jump function.

Set it to this value, or to ⊥ if it is different from a previously set
value.

•  if the value of the target parameter changes, put this parameter
on the queue

EE663, Spring 2012 Slide 93

Examples of Constant Propagation

EE663, Spring 2012

x = 3
Call SubY(x)

Subroutine SubY(a)

… = ….a…

x = 3
Call SubY(x)

Subroutine SubY(a)
b = a+2
Call SubZ(b)

Subroutine SubZ(e)

 … = … e….

x = 3
Call SubY(x)

Subroutine SubY(a)
b = a+2
Call SubZ(b)

Subroutine SubZ(e)

 … = … e….

t = 6
Call SubU(t)

Subroutine SubU(c)
d = c-1
Call SubZ(d)

Slide 94

Consider
what
happens if
t = 7

Interprocedural
Data-Dependence Analysis

•  Motivational examples:

DO i=1,n
 call clear(a,i)
ENDDO

Subroutine clear(x,j)
 x(j) = 0
END

DO i=1,n
 a(i) = b(i)
 call dupl(a,i)
ENDDO

Subroutine dupl(x,j)
 x(j) = 2*x(j)
END

DO k=1,m
 DO i=1,n
 a(i,k) = math(i,k)
 call smooth(a(i,k))
ENDDO

Subroutine smooth(x,j)
 x(j) = (x(j-1)+x(j)+x(j+1))/3
END

EE663, Spring 2012 Slide 95

Interprocedural
Data-Dependence Analysis

•  Overall strategy:
– subroutine inlining
– move loop into called subroutine
– collect array access information in callee

and use in the analysis of the caller
→ will be discussed in more detail

EE663, Spring 2012 Slide 96

Interprocedural
Data-Dependence Analysis

•  Representing array access information
–  summary information

•  [low:high] or [low:high:stride]
•  sets of the above

–  exact representation
•  essentially all loop bound and subscript information is

captured

–  representation of multiple subscripts
•  separate representation
•  linearized

EE663, Spring 2012 Slide 97

Interprocedural
Data-Dependence Analysis

•  Reshaping arrays
– simple conversion

•  matching subarray or 2-D→1-D
– exact reshaping with div and mod
–  linearizing both arrays
– equivalencing the two shapes

•  can be used in subroutine inlining
Important: reshaping may lose the implicit

assertion that array bounds are not violated!

EE663, Spring 2012 Slide 98

Symbolic Analysis

•  Expression manipulation techniques
–  Expression simplification/normalization
–  Expression comparison
–  Symbolic arithmetic

•  Range analysis
–  Find lower/upper bounds of variable values at a

given statement
•  For each statement and variable, or
•  Demand-driven, for a given statement and variable

EE663, Spring 2012 Slide 99

Symbolic Range Analysis
Example

EE663, Spring 2012 Slide 100

int foo(int k) {}
[]

int i, j;
[]

double a;
[]

for (i=0; i<10; ++i) {
[0<=i<=9]

a=(0.5*i);
}

[i=10]
j=(i+k);

[i=10, j=(i+k)]
return j;

}

Alias Analysis

Simple case: different named variables allocated in same
storage location

•  Fortran Equivalence statement
•  Same variable passed to subroutine by-reference as two

different parameters (can happen in Fortran and C++, but
not in C)

•  Global variable also passed as subroutine parameter

EE663, Spring 2012 Slide 101

Find references to the same storage by different names
⇒  Program analyses and transformations must consider all these

names

Pointer Alias Analysis
•  More complex: variables pointed to by named pointers

–  p=&a; q=&a => *p, *q are aliases
–  Same variable passed to C subroutines via pointer

•  Most complex: pointers between dynamic data structure
objects
–  This is commonly referred to as shape analysis

EE663, Spring 2012 Slide 102

Is Alias Analysis in Parallelizing
Compilers Important?

•  Fortran77: alias analysis is simple/absent
–  By Fortran rule, aliased subroutine parameters must not be

written to
–  there are no pointers

•  C programs: alias analysis is a must
–  Pointers, pointer arithmetic
–  No Fortran-like rule about subroutine parameters
–  Without alias information, compilers would have to be very

conservative => big loss of parallelism
–  Classical science/engineering applications do not have

dynamic data structures => no shape analysis needed

EE663, Spring 2012 Slide 103

IV.5 Dynamic Decision
Support

EE663, Spring 2012 Slide 104

Achilles’ Heel of Compilers
Big compiler limitations:

–  Insufficient compile-time knowledge
•  Input data
•  Architecture parameters (e.g., cache size)
•  Memory layout

–  Even if this information is known: Performance models too
complex

Effect:
–  Unknown profitability of optimizations
–  Inconsistent performance behavior
–  Conservative behavior of compilers
–  Many compiler options
–  Users need to experiment with options

EE663, Spring 2012 Slide 105

Multi-version Code
IF (d>n)
 PARALLEL DO i=1,n
 a(i) = a(i+d)
 ENDDO
ELSE
 DO i=1,n
 a(i) = a(i+d)
 ENDDO

Limitations
•  Less readable
•  Additional code
•  Not feasible for all

optimizations
•  Combinatorial explosion

when trying to apply to
many optimization
decisions

EE663, Spring 2012 Slide 106

Profiling
•  Gather missing information in a profile run

–  Compiler instruments code that gathers at runtime
information needed for optimization decisions

•  Use the gathered profile information for improved
decision making in a second compiler invocation

•  Training vs. production data
•  Initially used for branch prediction. Now increasingly

used to guide additional transformations.
•  Requires a compiler performance model

EE663, Spring 2012 Slide 107

Autotuning – Empirical Tuning

Try many optimization
variants; pick the
best at runtime.

•  No compiler performance
model needed

•  Optimization decisions
based on true execution time

•  Dependence on training data
(same as profiling)

•  Potentially huge search
space

•  Whole-program vs. section-
level tuning

EE663, Spring 2012 Slide 108

Search
Space

Navigation
Version

Generation

Runtime
Evaluation

Many active research projects

IV.4 Techniques for Vector
Machines

EE663, Spring 2012 Slide 109

Vector Instructions

A vector instruction operates on a number of
data elements at once.
Example: vadd va,vb,vc,32
vector operation of length 32 on vector registers va,vb, and vc
–  va,vb,vc can be

•  Special cpu registers or memory → classical
supercomputers

•  Regular registers, subdivided into shorter partitions (e.g.,
64bit register split 8-way) → multi-media extensions

–  The operations on the different vector elements
can overlap → vector pipelining

EE663, Spring 2012 Slide 110

Applications of Vector
Operations

•  Science/engineering applications are typically
regular with large loop iteration counts.
This was ideal for classical supercomputers, which

had long vectors (up to 256; vector pipeline startup
was costly).

•  Graphics applications can exploit “multi-
media” register features and instruction sets.

EE663, Spring 2012 Slide 111

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

A(1:n)=B(1:n)+C(1:n)

Basic Vector Transformation

DO i=1,n
 A(i) = B(i)+C(i)
 C(i-1) = D(i)**2
ENDDO

A(1:n)=B(1:n)+C(1:n)
C(0:n-1)=D(1:n)**2

The triplet notation is interpreted to mean “vector operation”. Notice that this
is not (necessarily) the same meaning as in Fortran 90,

EE663, Spring 2012 Slide 112

DO i=1,n
 A(i) = B(i)+C(i)
 D(i) = A(i)+A(i-1)
ENDDO

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

DO i=1,n
 D(i) = A(i)+A(i-1)
ENDDO

A(1:n)=B(1:n)+C(1:n)
D(1:n)=A(1:n)+A(0:n-1)

dependence

loop
distribution

vectorization

Distribution and Vectorization
The transformation done on the previous slide involves loop distribution. Loop
distribution reorders computation and is thus subject to data dependence
constraints.

The transformation is not legal if there is a
lexical-backward dependence:

DO i=1,n
 A(i) = B(i)+C(i)
 C(i+1) = D(i)**2
ENDDO

loop-carried
dependence Statement reordering may help

resolve the problem. However, this is
not possible if there is a dependence
cycle.

EE663, Spring 2012 Slide 113

Vectorization Needs
Expansion

... as opposed to privatization

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

DO i=1,n
 T(i) = A(i)+B(i)
 C(i) = T(i) + T(i)**2
ENDDO

expansion

T(1:n) = A(1:n)+B(1:n)
C(1:n) = T(1:n)+T(1:n)**2

vectorization

EE663, Spring 2012 Slide 114

DO i=1,n
 IF (A(i) < 0) A(i)=-A(i)
ENDDO

WHERE (A(1:n) < 0) A(1:n)=-A(1:n)

conditional vectorization

Conditional Vectorization

EE663, Spring 2012 Slide 115

DO i=1,n
 A(i) = B(i)
ENDDO

DO i1=1,n,32
 DO i=i1,min(i1+31,n)
 A(i) = B(i)
 ENDDO
ENDDO

stripmining

Stripmining for Vectorization

Stripmining turns a single loop into a doubly-nested loop for two-level parallelism.
It also needs to be done by the code-generating compiler to split an operation into
chunks of the available vector length.

EE663, Spring 2012 Slide 116

EE663, Spring 2012 Slide 117

IV.7 Compiling for
Heterogeneous

Architectures

Why Heterogeneous
Architectures?

•  Performance
–  Fast uniprocessor best for serial code
–  Many simple cores best for highly parallel code
–  Special-purpose architectures for accelerating

certain code patterns
•  E.g., math co-processor

•  Energy
–  Same arguments hold for power savings

EE663, Spring 2012 Slide 118

Examples of Accelerators

•  GPU
•  nvidia GPGPU
•  IBM Cell
•  Intel MIC
•  FPGAs
•  Crypto processor
•  Network processor
•  Video Encoder/decoder

EE663, Spring 2012 Slide 119

Accelerators are typically used as
co-processors.
•  CPU+accelerator = heterogeneous
•  Shared or distributed address space

Accelerator Architecture

Example GPGPU:
•  Address space is

separate from CPU
•  Complex Memory

hierarchy
•  Large number of cores
•  Multithreaded SIMD

execution
•  Optimized for coalesced

(stride-1) accesses

EE663, Spring 2012 Slide 120

CPU GPU

Thread Block M

Thread Block 0

Shared Memory

Thread 0 •••

Registers Registers

Local
Memory

Local
Memory

Texture Memory with a Dedicated Cache

Constant Memory with a Dedicated Cache

 Global Memory

Thread K

Grid

CPU
Memory

CUDA
Memory
Model

Compiler Optimizations for
GPGPUs

•  Optimizing GPU Global Memory Accesses
–  Parallel Loop Swap
–  Loop Collapsing
–  Matrix Transpose

•  Exploiting GPU On-chip Memories

•  Optimizing CPU-GPU Data Movement
–  Resident GPU Variable Analysis
–  Live CPU Variable Analysis
–  Memory Transfer Promotion Optimization

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 121

Parallel Loop-Swap
Transformation

#pragma omp parallel for
for(i=0; i< N; i++)
 for(k=0; k<N; k++)
 A[i][k] = B[i][k];
 Input OpenMP code

#pragma omp parallel for
schedule(static, 1)

for(k=0; k<N; k++)
 for(i=0; i<N; i++)
 A[i][k] = B[i][k];
 Optimized OpenMP code

T0

i

k

T1
T2
T3

Thread ID

Global Memory

Memory access at time t

T0

i

T1 T2 T3 Thread ID

Global Memory

k

Memory
access at
time t

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 122

Loop Collapsing
Transformation

#pragma omp parallel for
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
 Input OpenMP code

#pragma omp parallel
#pragma omp for collapse(2)

schedule(static, 1)
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
 Optimized OpenMP code

T0
T1
T2
T3

Thread ID

i

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7

Global Memory

Global Memory

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 123

Matrix-Transpose Transformation

float d[N][M]
...
<transpose d on transfer to GPU>
#kernel function:
float d[M][N]
pragma omp parallel
for(k=0; i< N; i++)
 for(i=0; k<M; k++)
 …d[i,k] …];

T0

k

i

T1
T2
T3

Thread ID

Global Memory

Memory access at time t

T0

i

T1 T2 T3 Thread ID

Global Memory

k

Memory
access at
time t

A

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 124

Techniques to Exploit GPU
On-chip Memories

Caching Strategies

 Reg: Registers CM: Constant Memory
 SM: Shared Memory TM: Texture Memory

Variable Type Caching Strategy

R/O shared scalar w/o locality SM

R/O shared scalar w/ locality SM, CM, Reg

R/W shared scalar w/ locality Reg, SM

R/W shared array element w/ locality Reg

R/O 1-dimensional shared array w/ locality TM

R/W private array w/ locality SM

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 125

Techniques to Optimize Data
Movement between CPU and GPU
•  Resident GPU Variable Analysis

–  Up-to-date data in GPU global memory:
 do not copy again from CPU.

•  Live CPU Variable Analysis
–  After a kernel finishes:
 only transfer live CPU variables from GPU to

CPU.
•  Memory Transfer Promotion Optimization

–  Find optimal points to insert necessary memory
transfers

R. Eigenmann, Programming Models and Compilers for Accelerators Slide 126

GPGPU Performance Relative
to CPU

EE663, Spring 2012 Slide 127

Importance of
Individual

Optimizations

EE663, Spring 2012
!"#$%&'()*+,

-,

-./,

-.0,

-.1,

-.2,

3,

3./,

4*"5'6(789('#*:;*", 4*"<'('=="=>;;:?@':, 4*"A#(;==7#BC#D"E4$F;#,

!"
##
$%

"&

-,

-./,

-.0,

-.1,

-.2,

3,

3./,

*%(E?$=(G'$%7#BC#G;#*6, *%(E?$=(G'$%7#BC#D"B, *%(E?$=(G'$%7#BC#?5,

!"
##
$%

"&

-,

-./,

-.0,

-.1,

-.2,

3,

3./,

:(H6I((JG'$%7#BC#?5, *%(EI((JG'$%7#BC#G;#*6, *%(EI((JG'$%7#BC#95, *%(EI((JK=&6G'$%7#BC#D"B,

!"
##
$%

"&

-,

-./,

-.0,

-.1,

-.2,

3,

3./,

$4E'5'==;$C:6>"H"=L3, $4E'5"&9(C:6>"H"=L/, B=;M'=N5'==;$C:6, 4*"N=;M'=N5'==;$,

!"
##
$%

"&

-,

-./,

-.0,

-.1,

-.2,

3,

3./,

4*"5'==;<76%, '**4&"O;#P"(;9(7:>;;:*, $4E'9%("'E!=;$)?7Q", =;$'=D"ER'(G;#SL-,

!"
##
$%

"&

IV.8 Techniques Specific
to Distributed-memory

Machines

EE663, Spring 2012 Slide 129

Execution Scheme on a
Distributed-Memory Machine

M
P

M
P

M
P

M
P

Typical execution scheme:
•  All nodes execute the same program
•  Program uses node_id to select the
subcomputation to execute on each
participating processor and the data to access.
For example,

mystrip=⎡n/max_nodes⎤
lb = node_id*mystrip +1
ub = min(lb+mystrip-1,n)
DO i=lb,ub
 . . .
ENDDO

DO i=1,n

. . .

ENDDO

This is called Single-Program-Multiple-Data (SPMD) execution
scheme

how to place
and access
data ?

how/when to
synchronize ?

EE663, Spring 2012 Slide 130

Data Placement

Single owner:
•  Data is distributed onto the participating

processors’ memories

Replication:
•  Multiple versions of the data are placed

on some or all nodes.

EE663, Spring 2012 Slide 131

numbers indicate the node of a 4-processor
distributed-memory machine on which the
array section is placed

1 2 3 4 block
distribution

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4    cyclic
distribution

1 2 3 4    block-cyclic
distribution

1

IND(1) IND(2) IND(3) IND(4)    indexed
distribution

IND(5)

    index array

Data Distribution Schemes

Automatic data distribution is difficult because it is a
global optimization.

EE663, Spring 2012 Slide 132

DO i=1,n
 B(i) = A(i)+A(i-1)
ENDDO

send (A(ub),my_proc+1)
receive (A(lb-1),my_proc-1)
DO i=lb,ub
 B(i) = A(i)+A(i-1)
ENDDO

message
generation

•  lb,ub determine the iterations assigned to each processor.
•  data uses block distribution and matches the iteration distribution
•  my_proc is the current processor number

Message Generation
for single-owner placement

Compilers for languages such as HPF (High-Performance
Fortran) have explored these ideas extensively

EXAMPLE

EE663, Spring 2012 Slide 133

Owner-computes Scheme

DO i=1,n
 A(i)=B(i)+B(i-m)
 C(ind(i))=D(ind2(i))
ENDDO

DO i=1,n
 send/receive what’s necessary
 IF I_own(A(i)) THEN
 A(i) = B(i)+B(i-m)
 ENDIF
 send/receive what’s necessary
 IF I_own(C(ind(i)) THEN
 C(ind(i))=D(ind2(i))
 ENDIF
ENDDO

•  nodes execute those iterations and statements whose LHS they own
•  first they receive needed RHS elements from remote nodes
•  nodes need to send all elements needed by other nodes
Example shows basic idea only. Compiler optimizations needed!

In general, the elements accessed by a processor are different from the elements
owned by this processor as defined by the data distribution

EE663, Spring 2012 Slide 134

Compiler Optimizations
for the raw owner computes scheme

•  Eliminate conditional execution
–  combine if statements with same condition
–  reduce iteration space if possible

•  Aggregate communication
–  combine small messages into larger ones
–  tradeoff: delaying a message enables message

aggregation but increases the message latency.
•  Message Prefetch

–  moving send operations earlier in order to reduce
message latencies.

there is a large number of research papers describing such techniques
EE663, Spring 2012 Slide 135

Message Generation for
Virtual Data Replication

Broadcast written data

Fully parallel section
w. local reads and writes

Fully parallel section
w. local reads and writes

time

Optimization: reduce broadcast
operations to necessary point-to-point
communication

Advantages:
• Fully parallel sections with local reads and writes
• Easier message set computation (no partitioning per processor needed)

Disadvantages:
• Not data-scalable
• More write operations necessary (but, collective communication can be used)

EE663, Spring 2012 Slide 136

7 Techniques for
Instruction-Level

Parallelization

EE663, Spring 2012 Slide 137

Implicit vs. Explicit ILP

Implicit ILP: ISA is the same as for sequential
programs.
–  most processors today employ a certain degree of

implicit ILP
–  parallelism detection is entirely done by the hardware
–  compiler can assist ILP by arranging the code so that

the detection gets easier.

EE663, Spring 2012 Slide 138

Implicit vs. Explicit ILP
Explicit ILP: ISA expresses parallelism.

–  parallelism is detected by the compiler
–  parallelism is expressed in the form of

•  VLIW (very long instruction words): packing several instructions
into one long word

•  EPIC (Explicitly Parallel Instruction Computing): bundles of (up
to three) instructions are issued. Dependence bits can be
specified.

 Used in Intel/HP IA-64 architecture. The processor also
supports predication, early (speculative) loads, prepare-to-
branch, rotating registers.

EE663, Spring 2012 Slide 139

trace scheduling

Trace Scheduling
(invented for VLIW processors, still a useful terminology)

Two big issues must be solved by
all approaches:
1. Identifying the instruction sequence

that will be inspected for ILP.
 Main obstacle: branches
2. reordering instructions so that

machine resources are exploited
efficiently.

trace selection

trace compaction

EE663, Spring 2012 Slide 140

Trace Selection
•  It is important to have a large instruction window (block) within

which the compiler can find parallelism.
•  Branches are the problem. Instruction pipelines have to be

flushed/squashed at branches
•  Possible remedies:

–  eliminate branches
–  code motion can increase block size
–  block can contain out-branches with low probability
–  predicated execution

EE663, Spring 2012 Slide 141

Branch Elimination

•  Example:

 comp R0 R1
 bne L1:
 bra L2:
L1: . . .
 . . .

L2: . . .

 comp R0 R1
 beq L2:

L1: . . .
 . . .

L2: . . .

EE663, Spring 2012 Slide 142

Code Motion

I1 I1

I1

c1

I1
c2

I2 I3

c2

c1
I1 I3

c1

I1 I2

Code motion can increase window sizes and eliminate subtrees

EE663, Spring 2012 Slide 143

IF (a>0) THEN
 b=a
ELSE
 b=-a
ENDIF

p = a>0
p: b=a
p: b=-a

; assignment of predicate
; executed if predicate true
; executed if predicate false

Predicated Execution

Predication
•  increases the window size for analyzing and exploiting parallelism
•  increases the number of instructions “executed”
These are opposite demands!

Compare this technique to conditional vectorization

EE663, Spring 2012 Slide 144

ind = i0
. . .
ind = ind+1
. . .
ind = ind+1

dependence

dependence

ind = i0
. . .
ind = i0+1
. . .
ind = i0+2

sum = sum+expr1
. . .
sum = sum+expr2
. . .
sum = sum+expr3
. . .
sum = sum+expr4

dependence

dependence

s1=expr1
. . .
s1=s1+expr2
. . .
s2=expr3
. . .
s2=s2+expr4
. . .
sum=sum+s1+s2

dependence

shaded blocks of statements are independent of each other and can
be executed as parallel instructions

Dependence-removing ILP
Techniques

EE663, Spring 2012 Slide 145

Speculative ILP
Speculation is performed by the architecture in various forms

–  Superscalar processors: compiler only has to deal with the
performance model. ISA is the same as for non-speculative
processors

–  Multiscalar processors: (research only) compiler defines tasks that
the hardware can try execute speculatively in parallel. Other than
task boundaries, the ISA is the same.

 References:
•  Task Selection for a Multiscalar Processor, T. N. Vijaykumar and

Gurindar S. Sohi, The 31st International Symposium on
Microarchitecture (MICRO-31), pp. 81-92, December 1998.

•  Reference Idempotency Analysis: A Framework for Optimizing
Speculative Execution, Seon-Wook Kim, Chong-Liang Ooi, Rudolf
Eigenmann, Babak Falsafi, and T.N. Vijaykumar,, In Proc. of
PPOPP'01, Symposium on Principles and Practice of Parallel
Programming, 2001.

EE663, Spring 2012 Slide 146

EE663, Spring 2004 Slide 147

Compiler Model of Explicit
Specluative Parallel Execution

(Multicalar Processor)
•  Overall Execution: speculative

threads choose and start the
execution of any predicted next
thread.

•  Data Dependence and Control
Flow Violations lead to roll-
backs.

•  Final Execution: satisfies all
cross-segment flow and control
dependences.

•  Data Access: Writes go to
thread-private speculative
storage. Reads read from
ancestor thread or memory.

•  Dependence Tracking: Data
Flow and Control Flow
dependences are detected
directly. Lead to roll-back. Anti
and Output dependences are
satisfied via speculative
storage.

•  Segment Commit: Correctly
executed threads (I.e., their final
execution) commit their
speculative storage to the
memory, in sequential order.

