
Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 1

ECE573, Fall 2005 1

Prof. R. Eigenmann

ECE573, Fall 2005

http://www.ece.purdue.edu/~eigenman/ECE573

Compilers & Translator
Writing Systems

ECE573, Fall 2005 2

Compilers are Translators

 Fortran
 C
 C++
 Java
 Text processing

language
 Command

Language
 Natural

language

 Machine code
 Virtual machine code
 Transformed source

code
 Augmented source

code
 Low-level commands
 Semantic

components

translate

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 2

ECE573, Fall 2005 3

Compilers are Increasingly
Important

Increasingly high level user interfaces for
specifying a computer problem/solution

Specification languages
 ↑
High-level languages
 ↑
Assembly languages

Increasingly complex machines

Non-pipelined processors
Pipelined processors
Speculative processors
Worldwide “Grid”

The compiler is the translator
between these two diverging ends

ECE573, Fall 2005 4

Assembly code and Assemblers

Assemblers are often used at the compiler
back-end.

Assemblers are low-level translators.
They are machine-specific,
 and perform mostly 1:1 translation between

mnemonics and machine code, except:
– symbolic names for storage locations

• program locations (branch, subroutine calls)
• variable names

– macros

Assemblerassembly
code

machine
codeCompiler

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 3

ECE573, Fall 2005 5

Interpreters
 “Execute” the source language directly.

 Interpreters directly produce the result of a
computation, whereas compilers produce
executable code that can produce this result.

 Each language construct executes by
invoking a subroutine of the interpreter, rather
than a machine instruction.

Examples of interpreters?

ECE573, Fall 2005 6

Properties of Interpreters
 “execution” is immediate
 elaborate error checking is possible
 bookkeeping is possible. E.g. for garbage

collection
 can change program on-the-fly. E.g., switch

libraries, dynamic change of data types
 machine independence. E.g., Java byte code
BUT:
 is slow; space overhead

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 4

ECE573, Fall 2005 7

Job Description of a Compiler

At a very high level a compiler performs
two steps:

1. analyze the source program
2. synthesize the target code

ECE573, Fall 2005 8

Block Diagram of a Compiler
Tokenizer, lexer, also processes comments and

directives. Token description via regular expressions
→ scanner generators. Takes non-trivial time.

Grouping of tokens. CFG (context free grammar). Error
detection and recovery. Parser generator tools.

The heart of a compiler. Deals with the meaning of the
language constructs. Translation to IR. Abstract code
generation. Not automatable, but can be formalized
through Attribute Grammars.

Generate functionally equivalent but improved code.
Complex. Slow. User options to set level. Peephole
vs. global optimization. Source vs. object code
optimization. Usually hand-coded. Automation is a
research topic, e.g. template optimizers.

Machine-specific, although similarities for classes of
machines. Instruction selection, register allocation,
instruction scheduling.

Scanner

Parser

Semantic Routines

Optimizer

Code Generator

compiler passes:

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 5

ECE573, Fall 2005 9

Compiler Writing Tools
Other terms: compiler generators, compiler

compilers
 scanner generators, example: lex

 parser generators, example: yacc

 symbol table routines,
 code generation aids,
 (optimizer generators, still a research topic)
These tools are useful, but bulk of work for

compiler writer is in semantic routines and
optimizations.

ECE573, Fall 2005 10

Compiler Input, Output and
Intermediate Representations

character sequence I F (a < b) T H E N c = d + e

IF (ID
“a” < ID

“b”) THEN ID
“c” = ID

“d” + ID
“e”

Scanner

token sequence

d

b
lhs

Parser

IF_stmt

cond_expr
<

a

then_clause
list

assgn_stmt rhs
c

+
e

syntax tree

GE a,b,L1
ADD d,e,c
Label L1

Semantic Routines

3-address code
loadi R1,a
cmpi R1,b
jge L1
loadi R1,d
addi R1,e
storei R1,c

Code Generator

assembly code

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 6

ECE573, Fall 2005 11

Symbol and Attribute Tables
 Keep information about identifiers: variables,

procedures, labels, etc.
 The symbol table is used by most compiler passes

– Symbol information is entered at declaration points,
– Checked and/or updated where the identifiers are used in

the source code.

Program Example
Integer ii;
...
ii = 3.5;
...
print ii;

Symbol Table
Name Type Scope
 ii int global
...

ECE573, Fall 2005 12

Sequence of Compiler Passes
In general, all compiler passes are run in sequence.

– They read the internal program representation,
– process the information, and
– generate the output representation.

For a simple compiler, we can make a few simplifications.
For example:
– Semantic routines and code generator are combined
– There is no optimizer
– All passes may be combined into one. That is, the compiler

performs all steps in one run.
 One-pass compilers do not need an internal representation. They process a

syntactic unit at a time, performing all steps from scanning to code
generation.

Example: (simple) Pascal compilers

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 7

ECE573, Fall 2005 13

Language Syntax and
Semantics

An important distinction:
 Syntax defines the structure of a language.

E.g., an IF clause has the structure:
IF (expression) THEN statements

 Semantics defines its meaning.
E.g., an IF clause means:
test the expression; if it evaluates to true,

execute the statements.

ECE573, Fall 2005 14

Context-free and
Context-sensitive Syntax

 The context-free syntax part specifies legal
sequences of symbols, independent of their
type and scope.

 The context-sensitive syntax part defines
restrictions imposed by type and scope.
– Also called the “static semantics”. E.g., all

identifiers must be declared, operands must be
type compatible, correct #parameters.

– Can be specified informally or through attribute
grammar.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 8

ECE573, Fall 2005 15

 CFG:
 E1 → E2 + T

 Context-sensitive part, specified
through Attribute Grammar:

(E2.type=numeric) and (T.type=numeric)

Example
 context-free and context-sensitive syntax parts

“The term E1 is composed
of E2, a “+”, and a T”

“Both E1 and T must be of
type numeric”

ECE573, Fall 2005 16

(Execution) Semantics
(a.k.a. runtime semantics)
 Often specified informally
 Attempts to formalize execution semantics (have

not reached practical use):
– Operational or interpreter model: (state-transition

model). E.g., Vienna definition language, used for
PL/1. Large and verbose.

– Axiomatic definitions: specifies the effect of
statements on variable relationships. More abstract
than operational model.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 9

ECE573, Fall 2005 17

Execution Semantics
 Denotational Semantics:

– More mathematical than operational
semantics. Includes the notion of a “state”.

– For example, the semantics of E[T1+T2] :
If E[T1] is integer and E[T2] is integer

 then the result is (E[T1]+E[T2]) else error

– Is an important research area.
 Goal: compiler generators from D.S.

ECE573, Fall 2005 18

Significance of Semantics
Specification

 Leads to a well-defined language, that
is complete and unambiguous.

 Automatic generation of semantics
routines becomes possible.

Note: A compiler is a de-facto language
definition. (what’s not fully defined in the
language specs is defined in the
compiler implementation)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 10

ECE573, Fall 2005 19

Compiler and Language Design
There is a strong mutual influence:
 hard to compile languages are hard to read
 easy to compile language lead to quality

compilers, better code, smaller compiler, more
reliable, cheaper, wider use, better diagnostics.

Example: dynamic typing
– seems convenient because type declaration is not needed
However, such languages are
– hard to read because the type of an identifier is not known
– hard to compile because the compiler cannot make assumptions

about the identifier’s type.

ECE573, Fall 2005 20

Compiler and Architecture
Design

 Complex instructions were available
when programming at assembly level.

 RISC architecture became popular with
the advent of high-level languages.

 Today, the development of new
instruction set architectures (ISA) is
heavily influenced by available compiler
technology.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 11

ECE573, Fall 2005 21

So far we have discussed ...
Structure and Terminology of Compilers
 Tasks of compilers, interpreters, assemblers
 Compiler passes and intermediate representations
 Scope of compiler writing tools
 Terminology: Syntax, semantics, context-free grammar,

context-sensitive parts, static semantics,
runtime/execution semantics

 Specification methods for language semantics
 Compiler, language and architecture design

Next: An example compiler

22

The Micro Compiler

An example of a one-pass
compiler for a mini language

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 12

ECE573, Fall 2005 23

The Micro Language
 integer data type only
 implicit identifier declaration. 32 chars

max. [A-Z][A-Z0-9]*
 literals (numbers): [0-9]*
 comment: -- non-program text <end-of-line>
 Program :

 BEGIN Statement, Statement, ... END

ECE573, Fall 2005 24

Micro Language

 Statement:
– Assignment:

ID := Expression
Expression can contain infix + -, () , Ids, Literals

– Input/Output:
READ(ID, ID, …)
WRITE(Expression, Expression, …)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 13

ECE573, Fall 2005 25

Implementation of the Micro
Compiler

 1-pass compiler. No explicit
intermediate representation.

 Scanner: tokenizes input character
stream. Is called by parser on-
demand.

 Parser recognizes syntactic structure,
calls Semantic Routines.

 Semantic routines, in turn, call code
generation routines directly, producing
code for a 3-address virtual machine.

 Symbol table is used by Semantic
routines only

Parser

Scanner

Semantic
Routines
and code
generator

ECE573, Fall 2005 26

Scanner for Micro

Interface to parser: token scanner();

Scanner Algorithm: (see textbook p. 28/29)

typedef enum token_types {
 Begin, End, Read, Write, ID, Intliteral,
 Lparem, Rparen, Semicolon, Comma, Assignop,
 Plusop, Minusop, ScanEof} token;

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 14

ECE573, Fall 2005 27

Scanner Operation

 scanner routine:
– identifies the next token in the input

character stream :
 read a token
 identify its type
 return token type and “value”

ECE573, Fall 2005 28

Scanner Operation (2)
 Skip spaces.
 If the first non-space character is a

– letter: read until non-alphanumeric. Put in buffer.
Check for reserved words. Return reserved word or
identifier.

– digit: read until non-digit. Put in buffer. Return number
(INTLITERAL).

– () ; , + → return single-character symbol.
– : : next must be = → return ASSIGNOP.
– - : if next is also - → comment. Skip to EOL.
 Read another token.
 Otherwise return MINUSOP.

 “unget” the next character that had to be read for Ids,
reserved words, numbers, and minusop.

 Note: Read-ahead by one character is necessary.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 15

ECE573, Fall 2005 29

Grammar and Parsers
 Context-Free Grammar (CFG) is most

often used to specify language syntax.
 (Extended) Backus-Naur form is a

convenient notation.
 It includes a set or rewriting rules or

Productions,
A production tells us how to compose a

non-terminal from terminals and other
non-terminals.

ECE573, Fall 2005 30

Micro Grammar
Program ::= BEGIN Statement-list END
Statement-list ::= Statement {Statement}
Statement ::= ID := Expression ; |
 READ (Id-list) ; |
 WRITE (Expr-list) ;
Id-list ::= ID {, ID }
Expr-list ::= Expression {, Expression}
Expression ::= Primary { Add-op Primary }
Primary ::= (Expression) |
 ID |
 INTLITERAL
Add-op ::= PLUSOP | MINUSOP
System-goal ::= Program SCANEOF

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 16

ECE573, Fall 2005 31

Given a CFG, how do we
parse a program?

Overall operation:
– start at goal term, rewrite productions (from left to right)

 if it’s a terminal: check if it matches an input token,
 else (it’s a non-terminal):

– if there is a single choice for a production: take this
 production,
– else: take the production that matches the first token.

– if the expected token is not there, that means syntax
error.

Notes:
•1-token lookahead is necessary.
•Static semantics is not checked (for Micro).

ECE573, Fall 2005 32

Operator Precedence
 Operator precedence is also specified in the

CFG ⇒ CFG tells what is legal syntax and
 how it is parsed.
For example,
Expr ::= Factor { + Factor }
Factor ::= Primary { * Primary }
Primary ::= (Expr) | ID | INTLITERAL

specifies the usual precedence rules: * before +

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 17

ECE573, Fall 2005 33

Recursive Descent Parsing
Each production P has an associated procedure,

usually named after the nonterminal on the LHS.
Algorithm for P():

– for nonterminal A on the RHS : call A().
– for terminal t on the RHS : call match(t), (matching

the token t from the scanner).
– if there is a choice for B: look at First(B)

First(B) is the set of terminals that B can start with.
(this choice is unique for LL(1) grammars). Empty
productions are used only if no other choice.

ECE573, Fall 2005 34

An Example Parse Procedure

Program ::= BEGIN Statement-list END

Procedure Program()
 match(Begin);
 StatementList();
 match(End);
END

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 18

ECE573, Fall 2005 35

Another Example Parse Procedure

Id-list ::= ID {, ID }

Procedure IdList()
 match(ID);
 WHILE LookAhead(Comma) match(ID);
END

ECE573, Fall 2005 36

Parser Code for Micro
(text pages 36 - 38)
Things to note:

– there is one procedure for each nonterminal.
– nonterminals with choices have case or if

statements.
– an optional list is parsed with a loop construct,

testing the First() set of the list item.
– error handling is minimal.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 19

ECE573, Fall 2005 37

Semantic Processing and
Code Generation

 Micro will generate code for a 3-address
machine: OP A,B,C performs A op B → C

 Temporary variables may be needed to
convert expressions into 3-address form.
Naming scheme: Temp&1, Temp&2, …

 D=A+B*C
MULT B,C,TEMP&1
ADD A,Temp&1,D

ECE573, Fall 2005 38

Semantics Action Routines and
Semantic Records

 How can we facilitate the creation of the semantic
routines?

 Idea: call routines that generate 3-address code at
the right points during parsing.
These action routines will do one of two things:

1. Collect information about parsed symbols for use by
other action routines. The information is stored in
semantic records.

2. Generate the code using information from semantic
records and the current parse procedure.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 20

ECE573, Fall 2005 39

Semantics Annotations

 Annotations are inserted in the grammar, specifying
when semantics routines are to be called.

 Consider A = B + 2
– num() and id() write semantic records of ID names and number

values.
– addop() generates code for the expr production, using

information from the semantic records created by num() and id().
– asstmt() generates code for the assignment to A, using the result

of B+2 generated by addop()

as_stmt → ID = expr #asstmt
expr → term + term #addop
term → ident #id | number #num

ECE573, Fall 2005 40

Annotated Micro Grammar
Program ::= #start BEGIN Statement-list END
Statement-list ::= Statement {Statement}
Statement ::= ID := Expression; #assign |
 READ (Id-list) ; |
 WRITE (Expr-list) ;
Id-list ::= Ident #read_id {, Ident #read_id }
Expr-list ::= Expression #write_expr {, Expression #write_expr }
Expression ::= Primary { Add-op Primary #gen_infix}
Primary ::= (Expression) |
 Ident |
 INTLITERAL #process_literal
Ident ::= ID #process_id
Add-op ::= PLUSOP #process_op |
 MINUSOP #process_op
System-goal ::= Program SCANEOF #finish

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 21

ECE573, Fall 2005 41

Semantics Action Routines for
Micro

 (text, pages 41 - 45)
 A procedure corresponds to each

annotation of the grammar.
 The parsing routines have been

extended to return information about the
identified constructs. E.g.,
void expression(expr_rec *results)

ECE573, Fall 2005 42

So far we have covered ...

 Structure of compilers and terminology
 Scanner, parser, semantic routines and

code generation for a one-pass
compiler for the Micro language

Next: Scanning

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 22

43

Scanning

regular expressions
finite automata

scanner generators
 practical considerations

ECE573, Fall 2005 44

Regular Expressions
 Examples of regular expressions:

– D=(0|…|9) L=(A|…|Z)
– comment = -- Not(Eol)*Eol
– Literal = D+.D+
– ID = L(L|D)*(_(L|D)+)*
– comment2 = ##((#|λ)Not(#))*##

 regular sets = strings defined by reg. exp.
 λ = empty string,
 * = 0 or more repetitions, + = 1 or more repetitions

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 23

ECE573, Fall 2005 45

a b c

c

a

state

(a b (c)+)+

Start state
Final state

transition

Finite Automata

 Example:

abccabccc

ECE573, Fall 2005 46

Transition Tables
 unique transitions => FA is deterministic (DFA)
 DFAs can be represented in transition tables
 T[s][c] indicates the next state after state s,

when reading character c

State

1
2
3
4

Character
- Eol a b ….
2
3
3 4 3 3 3

1 2 3 4
- - Eol

Not(Eol)

Consider: -- Not(Eol)* Eol
Example:
 --b

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 24

ECE573, Fall 2005 47

Finite Automata Program
Given a transition table, we can easily write a program
that performs the scanning operation:

state = initial_state;
while (TRUE) {
 next_state = T[state][current_char];
 if (nextstate==ERROR) break;
 state=next_state;
 if (current_char==EOF) break;
 current_char = getchar();
}
if (is_final_state(state))
 //a valid token is recognized
else
 lexical_error(current_char);

ECE573, Fall 2005 48

Same program “conventionally”
The previous program looks different from the scanner
shown on textbook pages 28/29. We could write the scanner
in that way too:

if (current_char == ‘-’) {
 current_char = getchar();
 if (current_char == ‘-’) {
 do
 current_char=get_char(); // skip character
 while (current_char != ‘\n’) ;
 } else {
 ungetc(current_char);
 lexical_error(current_char);
 }
}
else lexical_error(current_char);
// a valid token is recognized

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 25

ECE573, Fall 2005 49

Transducer
 A simple extension of a FA, which also

outputs the recognized string.
 Recognized characters are output, “the rest”

is discarded.

We need this for tokens that have a value.

1 2 3 4
T(-) T(-) T(Eol)

T(Not(Eol))

T(x) : toss x
x : save x

65

I
F

ECE573, Fall 2005 50

Example:
 A FA with Transducer for quoted

Strings

1 2

3

T(")

Not(")

T(")"

(" (Not(") | " ")* ")

Quoted string, double quotes within string

Examples:
"EE468" → EE468
 "it’s an ""easy"" job" → it’s an “easy” job
"""Polaris"" beats ""SUIF""" → “Polaris” beats “SUIF”

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 26

ECE573, Fall 2005 51

Scanner Generators

 We will discuss ScanGen, a scanner
generator that produces tables for a
finite automata driver program, and

 Lex, which generates a scanner
procedure directly, making use of user-
written “filter” procedures.

ECE573, Fall 2005 52

Scan Gen
User defines the input to ScanGen in the form of a file with

three sections:
– Options,
– Character Classes,
– Token Definitions:
 Token name {minor,major} = regular expression

 Regular expression can include except clauses, and
 {Toss} attributes

Example of ScanGen input:
 textbook page 61: extended Micro

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 27

ECE573, Fall 2005 53

ScanGen Driver
 The driver routine provides the actual

scanner routine, which is called by the
parser.
void scanner(codes *major,
 codes *minor,
 char *token_text)

 It reads the input character stream, and
drives the finite automata, using the
tables generated by ScanGen, and
returns the found token.

ECE573, Fall 2005 54

ScanGen Tables

 The finite automata table has the form
next_state[NUMSTATES][NUMCHARS]

 In addition, an action table tells the
driver when a complete token is
recognized and what to do with the
“lookahead” character:
action[NUMSTATES][NUMCHARS]

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 28

ECE573, Fall 2005 55

Action Table

 The action table has 6 possible values:

ERROR
MOVEAPPEND
MOVENOAPPEND
HALTAPPEND
HALTNOAPPEND
HALTREUSE

scan error.
current_token += ch and go on.
discard ch and go on.
current_token += ch, token found, return it.
discard ch, token found, return it.
save ch for later reuse, token found, return it.

Driver program on textbook pages 65,66

ECE573, Fall 2005 56

Lex
 Best-known scanner generator under UNIX.
 Has character classes and regular expressions

similar to ScanGen.
 Calls a user-defined “filter” function after a token

has been recognized. This function preprocesses
the identified token before it gets passed to the
parser.

 No {Toss} is provided. Filter functions take this role.
 No exceptions provided. But several regular

expressions can match a token. Takes the first one.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 29

ECE573, Fall 2005 57

Lex Operation

Example of a Lex input see textbook Page 67 (extended
Micro language)

Parser

yylex() filter
functions

may set
global variables

lex
definitions lex

input

lex
generator

calls

defines

generates

calls

Scanner

program
input

ECE573, Fall 2005 58

Practical Scanner Considerations:
Handling Reserved Words

 Keywords can be written as regular
expressions. However, this would lead
to a significant increase in FA size.

 Special lookup as “exceptions” is
simpler.

Exercise: Extend Regular Expressions for Micro
so that keywords are no exceptions.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 30

ECE573, Fall 2005 59

Practical Considerations:
 Additional Scanner Functions

 handling compiler directives

 Include files and conditional compilation
– minimal parsing is necessary to understand

these directives as well

C$ PARALLEL
 DO I=1,10
 A(I)=B(I)
 ENDDO

Simple directives can be
parsed in the scanner

ECE573, Fall 2005 60

Practical Considerations:
Pretty printing of source file

 issues:
– include error messages (also, handle delayed

error messages) and comment lines
– edit lines to include line numbers, pretty print, or

expand macros
– deal with very long lines

 → keep enough position information and print at end

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 31

ECE573, Fall 2005 61

Practical Considerations:
Generating symbol table entries

 in simple languages the scanner can build the
symbol table directly

 this does not work where variable scopes
need to be understood. In this case the
parser will build the symbol table.

ECE573, Fall 2005 62

Multi-Character Lookahead

 Fortran: DO I=1,100 DO I=1.100

 Pascal: 23.85 23..85

D D
D D

.
.

.
.

2 Solutions: Backup and “Special Action” State

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 32

ECE573, Fall 2005 63

General Scheme for Multi-
Character Lookahead

 remember states (T) that can be final states
 buffer the characters from then on
 if stuck in non-final state, backup to T.
 Example: 12.3e+q

1
2
.
3
e
+
q

Backup is successful because T exists
Return the token “12.3” and readback “e+q”could be final

potential error

FA processing

T

ECE573, Fall 2005 64

Lexical Error Recovery

 what to do on lexical error?
– 1. Delete characters read so far.
 Restart scanner.
– 2. Delete the first character read.
 Restart scanner.

This would not work well for runaway strings.
Possible solution: runaway string token.
Warning if a comment contains the beginning
of another comment.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 33

ECE573, Fall 2005 65

Translating Regular
Expressions into Finite

Automata
 Regular Expression can be composed

of:
a character “a”
λ empty expression
A | B expression A or expression B
AB A followed by B
A* A repeated 0 or more times

Mini Exercise: how can A+ be built?

ECE573, Fall 2005 66

Building the FA

a

λ

A | B

AB

A*

A

B

BA

A

a

λ

λ

λ

λ

λ λ

λ λ

λ λ λ

λ

Creating such
automata
results in
non-deterministic
FAs.
(several transitions
are possible)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 34

ECE573, Fall 2005 67

Building DFAs from NFAs

 The basic idea for building a
deterministic FA from a non-
deterministic FA is to group nodes that
can be reached via the same character
into one node.

 Algorithm see textbook p. 82

ECE573, Fall 2005 68

Optimizing FA
 The built FA are not necessarily

minimal.
 The basic idea of the optimization

algorithm is like this:
– 1. start with two big nodes, the first

includes all final states, the second
includes all other nodes.

– 2. successively split those nodes whose
transitions lead to different nodes.

Algorithm see textbook page 85

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 35

ECE573, Fall 2005 69

So far we have covered ...

 Compiler overview. Quick tour through
the major compiler passes.

 Scanners: Finite automata, transition
tables, regular expressions, scanner
generation methods and algorithms.

Next:
 Parsers

70

Parsing

Terminology
LL(1) Parsers

Overview of LR Parsing

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 36

ECE573, Fall 2005 71

Parsers: Terminology
 G : Grammar
 L(G): Language defined by G
 Vocabulary V of terminal (Vt) and non-

terminal (Vn) symbols
 Strings are composed of symbols
 Productions (rewriting rules) tell how to

derive strings (from other strings). We
will use the standard BNF form.

ECE573, Fall 2005 72

Micro in Standard BNF
1 Program ::= BEGIN Statement-list END
2 Statement-list ::= Statement StatementTail
3 StatementTail ::= Statement StatementTail
4 StatementTail ::= λ
5 Statement ::= ID := Expression ;
6 Statement ::= READ (Id-list) ;
7 Statement ::= WRITE (Expr-list) ;
8 Id-list ::= ID IdTail
9 IdTail ::= , ID IdTail
10 IdTail ::= λ
11 Expr-list ::= Expression ExprTail
12 ExprTail ::= , Expression ExprTail
13 ExprTail ::= λ
14 Expression ::= Primary PrimaryTail
15 PrimaryTail ::= Add-op Primary PrimaryTail
16 PrimaryTail ::= λ
17 Primary ::= (Expression)
18 Primary ::= ID
19 Primary ::= INTLITERAL
20 Add-op ::= PLUSOP
21 Add-op ::= MINUSOP
22 System-goal ::= Program SCANEOF

Compare this to
slide 30

A ::= B | C

A ::= B
A ::= C

A ::= B {C}

A ::= B tail
tail ::= C tail
tail ::= λ

::= and  are equivalent

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 37

ECE573, Fall 2005 73

Leftmost Derivation
 Rewriting of a given string starts with

the leftmost symbol
Exercise: do a leftmost derivation of input program

F(V+V) given the Grammar:
1: E → Prefix (E)
2: E → V Tail
3: Prefix → F
4: Prefix → λ
5: Tail → + E
6: Tail → λ

Draw the parse tree

ECE573, Fall 2005 74

Top-down and Bottom-up
Parsers

 Top-down parsers use left-most derivation
 Bottom-up parsers use right-most derivation
Notation:

– LL(1) : Leftmost deriv. with 1 symbol lookahead
– LL(k) : Leftmost deriv. with k symbols lookahead
– LR(1) : Rightmost deriv. with 1 symbol

lookahead

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 38

ECE573, Fall 2005 75

Grammar Analysis Algorithms
Follow (A) = {aεVt|S =>+ …Aa…}or{λ , if S =>+ ...A}
In English: the follow set
 is the set of possible terminal symbols that can follow a given nonterminal.
 consists of all terminals that can come after A in any program that can be

generated with the given grammar. It also includes λ, if A can be at the very
end of any program.

First(α) = {aεVt|α =>* aβ}or{λ , if α =>* λ}
In English: the first set
 is the set of possible terminal symbols that can be at the beginning of the

nonterminal A. It also includes λ, if A may produce the empty string.

 S: start symbol of the grammar
 a: a teminal symbol
 A: a non-terminal symbol
 α: any string

=> derived in 1 step
=>+ derived in 1 or more steps
=>* derived in 0 or more steps

ECE573, Fall 2005 76

Towards Parser Generators
The main issue: as we read the source program

tokens, we need to decide what productions to
use.

Step 1: find the (lookahead) tokens that can tell
that a production P (which has the form A → X1 ... Xm)
applies

 Predict(P) :
 if not (λ in First(X1 ... Xm)) return First(X1...Xm)
 else return (First(X1 ... Xm) - λ) U Follow(A)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 39

ECE573, Fall 2005 77

Parse Table

Step 2: building the parse table.
the parse table shows which production for a

non-terminal Vn to take, given a terminal Vt

 More formally:
 T : Vn x Vt P U {Error}

ECE573, Fall 2005 78

Building the Parse Table

T[A][t] initialize all fields to “error”
Foreach A:
 Foreach P with A on its LHS:
 Foreach t in Predict(P) :
 T[A][t] = P

Exercise: build the parse table for Micro

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 40

ECE573, Fall 2005 79

Building Recursive-Descent
Parsers from LL(1) Parse Tables
Given the parse table we can create a

program that writes the recursive
descent parse procedures discussed
earlier.
 Remember the algorithm on page 34.
 (If the choice of production is not unique,

the parse table tells us which one to take.)
However there is an easier method...

ECE573, Fall 2005 80

A Stack-Based Parser Driver for LL(1)
Given the parse table, a stack-based

algorithms looks much simpler than the
generator of a recursive-descent parser.

The basic algorithm is
1 push the RHS of the production onto the stack
2 pop a symbol. If it’s a terminal, match it;
3 if it’s a non-terminal, take its production

according to the parse table and goto 1
Algorithm on page 121

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 41

ECE573, Fall 2005 81

Including Semantic Actions in a
Stack-Based Parser Generator

 Action symbols are simply pushed onto
the stack as well.

 When popped, the semantic action
routines are called.

ECE573, Fall 2005 82

Turning Non-LL(1)
into LL(1) Grammar

consider :
stmt ::= if <expr> then <stmt list> endif
stmt ::= if <expr> then <stmt list> else <stmt list> end if
It is not LL(1) because it has a common prefix
We can turn this into:
stmt ::= if <expr> then <stmt list> <if suffix>
<if suffx> ::= end if
<if suffix> ::= else <stmt list> endif

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 42

ECE573, Fall 2005 83

Left-Recursion

E ::= E + T is left-recursive (the LHS is
also the first symbol of the RHS)

How would the stack-based parser
algorithm handle this production?

ECE573, Fall 2005 84

Removing Left Recursion

Example:
E → E + X
E → X

E → E1 Etail
E1 → X
Etail → + X Etail
Etail → λ

This can be
simplified

(Algoritm on page 125)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 43

ECE573, Fall 2005 85

If-Then-Else Problem
(a motivating example for LR grammars)

If x then y else z
If a then if b then c else d

this is analogous to a bracket notation when
left brackets >= right brackets: [[]
Grammar: S → [S C
 S → λ
 C →]
 C → λ

[[] SSλC or SSCλ
ambiguous

ECE573, Fall 2005 86

Solving the If-Then-Else
Problem

 The ambiguity exists at the language
level as well. The semantics needs to
be defined properly:
e.g., “the then part belongs to the closest

matching if”
S → [S
S → S1
S1 → [S1]
S1 → λ

This grammer is still not LL(1),
nor is it LL(k)
Show that this is so.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 44

ECE573, Fall 2005 87

Parsing the If-Then-Else
Construct

LL(k) parsers can look ahead k tokens.
 (LL(k) will not be discussed.
 Most important: be able to

– explain in English what LL(k) means and
– recognize a simple LL(k) grammar.)

For the If-Then-Else construct, a parsing
strategy is needed that can look ahead at
the entire RHS (not just k tokens) before
deciding what production to take.

 LR parsers can do that.

ECE573, Fall 2005 88

LR Parsers

A Shift-Reduce Parser:
 Basic idea: put tokens on a stack until

an entire production is found.
 Issues:

– recognize the end point of a production
– find the length of the production (RHS)
– find the corresponding nonterminal (i.e.,

the LHS of the production)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 45

ECE573, Fall 2005 89

Data Structures for
Shift-Reduce Parsers

At each state, given the next token,
 a goto table defines the successor state
 an action table defines whether to

– shift (put the next state and token on the
stack)

– reduce (a RHS is found, process the
production)

– terminate (parsing is complete)

ECE573, Fall 2005 90

Example of Shift-Reduce
Parsing

Consider the simple Grammar:
1: <program> → begin <stmts> end $

2: <stmts> → SimpleStmt ; <stmts>

3: <stmts> → begin <stmts> end ; <stmts>

4: <stmts> → λ

Shift Reduce Driver Algorithm on page 142, Fig 6.1..6.4

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 46

ECE573, Fall 2005 91

LR Parser Generators
(OR: HOW TO COME UP WITH GOTO AND ACTION TABLES?)

Basic idea:
 Shift in tokens; at any step keep the set

of productions that match the tokens
already read.

 Reduce RHS of recognized productions
(i.e., replace them by their LHS)

ECE573, Fall 2005 92

LR(k) Parsers

LR(0) parsers:
 no lookahead
 predict which production to use by looking

only at the symbols already read.
LR(k) parsers:
 k symbol lookahead
 most powerful class of deterministic bottom-

up parsers

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 47

ECE573, Fall 2005 93

Terminology for LR Parsing

 Configuration:
 A → X1 . . . Xi • Xi+1 . . . Xj

 Configuration set:
all the configurations that apply at a given

point in the parse. For example:

• marks the
point to which
the production
has been
recognized

A → B • CD
A → B • GH
T → B • Z

ECE573, Fall 2005 94

Configuration Closure Set

 Include all configurations necessary to
recognize the next symbol after the mark •

 For example:

S→ E$
E→ E + T | T
T→ ID | (E)

closure0({S→ • E$})={
S→ • E $
E→ • E+T
E→ • T
T→ • ID
T→ • (E) }

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 48

ECE573, Fall 2005 95

Successor Configuration Set

 Starting with the initial configuration set
s0 = closure0({S→ • α $}),

 a LR(0) parser will find the successor, given a
(next) symbol X.
X can be either a terminal (a token from the scanner) or a

nonterminal (the result of a reduction)

 Determining the successor s’ = go_to(s,X) :
1. pick all configurations in s of the form A → β • X γ

2. take closure0 of this set

ECE573, Fall 2005 96

Building the Characteristic
Finite State Machine (CFSM)
 Nodes are configuration sets
 Arcs are go_to relationships

Example:
1: S’→ S$
2: S→ ID
3: S→ λ

S’→ • S$
S → • ID
S → λ •

S → ID •

S’ → S • $ S’ → S $ •

ID

S $

State 0: State 1:

State 2: State 3:

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 49

ECE573, Fall 2005 97

Building the go_to Table

 Building the go_to table is
straightforward from the CFSM:

For the previous example the table looks
like this: State Symbol

 ID $ S
 0 1 2
 1
 2 3
 3

strictly speaking,
State 0 is inadequate,
i.e., there is a
shift-reduce conflict.
To resolve this
conflict,
An LR(1) parser is
needed.

ECE573, Fall 2005 98

Building the Action Table

Given the configuration set s:
 We shift if the next token matches the

terminal after the •
 in A→ α • a β ∈ s and a ∈ Vt , else error

 We reduce i if the • is at the end of a
production
B→ α • ∈ s and production i is B → α

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 50

ECE573, Fall 2005 99

LR(0) and LR(k) Grammars
 For LR(0) grammars the action table entries just

described are unique.

 For most useful grammars we cannot decide on shift or
reduce based on the symbols read. Instead, we have to
look ahead k tokens. This leads to LR(k).

 However, it is possible to create an LR(0) grammar that
is equivalent to any given LR(k) grammar (provided there
is an end marker). This is only of theoretical interest
because this grammar may be very complex and
unreadable.

ECE573, Fall 2005 100

Exercise

 Create CFSM, go_to table, and action
table for

S→ E$
E→ E + T | T
T→ ID | (E)

1: S→ E$
2: E→ E + T
3: E→ T
4: T→ ID
5: T→ (E)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 51

ECE573, Fall 2005 101

LR(1) Parsing
 LR(0) parsers may generate

– shift-reduce conflicts (both actions possible in same
configuration set)

– reduce-reduce conflicts (two or more reduce actions
possible in same configuration set)

 The configurations for LR(1) are extended to
include a lookahead symbol

 A → X1 . . . Xi • Xi+1 . . . Xj , l l ∈ Vt ∪ {λ}

Configurations that differ only in the lookahead symbol are
combined:

 A → X1 . . . Xi • Xi+1 . . . Xj , {l1…lm}

Lookahead symbol

ECE573, Fall 2005 102

Configuration Set Closure for
LR(1)

S→ E$
E→ E + T | T
T→ ID | (E)

closure1({S→ • E$, {λ})={
S→ • E$, {λ}
E→ • E+T, {$+}
E→ • T , {$+}
T→ • ID , {$+}
T→ • (E) , {$+}
 }

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 52

ECE573, Fall 2005 103

Goto and Action Table for
LR(1)

 The function goto1(configuration-set,symbol) is the same as
goto0() for LR(0)

 Goto table is also created the same way as for LR(0)
– The lookahead symbols are simply copied with the

configurations, when creating the successor states.
Notice that the lookahead symbols are a subset of the follow set.

 The Action table makes the difference. The lookahead
symbol is used to decide if a reduction is applicable.
Hence, the lookahead symbol resolves possible shift-
reduce conflicts.

ECE573, Fall 2005 104

Example: LR(1) for G3

 Exercise:
– create states and the goto table
– create the action table
– explain how you see that this is LR(1) and

not LR(0)

S→ E$
E→ E + T | T
T → T * P | P
P→ ID | (E)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 53

ECE573, Fall 2005 105

Problems with LR(1) Parsers

LR(1) parsers are very powerful. However,
 The table size can grow by a factor of | Vt |
 Storage-efficient representations are an

important issue.
Example: Algol 60 (a simple language) includes

several thousand states.

ECE573, Fall 2005 106

Solutions to the LR(1) Size
Problem

Several parser schemes similar to LR(1)
have been proposed

 LALR: merge certain states. There are
several LR optimization techniques (will
not be discussed further).

 SLR (simple LR): build a CFSM for
LR(0) then add lookahead. Lookahead
symbols are taken from the Follow sets
of a production.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 54

ECE573, Fall 2005 107

Exercise

 Determine if G3 is an SLR Grammar:

Hint: the states 7 and 11 have shift-reduce
conflicts. Can they be resolved by looking
at the Follow set?

 (Remember the lookahead symbol sets is a
subset of the follow set)

ECE573, Fall 2005 108

We have covered ...

 Scanners, scanner generators
 Parsers:

– Parser terminology
– LL(1) parsing and parser generation:

building stack-based parsers, including
action symbols.

– Overview of LR parsers: shift-reduce
parsers. CFSM. Basics of LR(1).

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 55

109

Semantic Processing

ECE573, Fall 2005 110

Some “Philosophy” About the
Structure of Compilers at First.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 56

ECE573, Fall 2005 111

Properties of 1-Pass
Compilers

 efficient
 coordination and communication of passes not

an issue
 single traversal of source program restricts

semantics checks and actions.
 no (or little) code optimization (peephole

optimization can be added as a separate pass)
 difficult to retarget, architecture-dependent.

Architecture-dependent and independent
decisions are mixed.

ECE573, Fall 2005 112

1-Pass Analysis
+ 1-Code Generation Pass

 More machine independent
 Can add optimization pass
 There is an intermediate

representation (IR, see slide 10)
that represents the analyzed
program. It is input to the code
generator.

 Each pass can now be exchanged
independently of each other

Analysis

Code

Generation

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 57

ECE573, Fall 2005 113

Multi-Pass Analysis
 Scanner can be a separate pass, writing a stream

(file) of tokens.
 Parser can be a separate pass writing a stream of

semantic actions.
 Analysis is very important in all optimizing compilers

and in programming tools
 Advantages of Multi-Pass Analysis:

– can handle Languages w/o variable declarations (need
multi-pass analysis for static semantics checking)

– no “forward declarations” necessary

ECE573, Fall 2005 114

Multi-Pass Synthesis
We view a compiler as performing two major tasks.

Analysis
understanding syntax and semantics of the source program.

Synthesis
generating the output (usually the target code)

 Simple multi-pass synthesis: code-generation + peephole
optimization

 Several optimization passes can be added
 Split into machine independent and dependent code

generation phases is desirable
 Importance of early multi-pass compilers : space savings.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 58

ECE573, Fall 2005 115

Families of Compilers
 Compilers that can understand multiple

languages.
– Syntax analysis has to be different.
– Some program analysis passes are generic.
– The choice of IR influences the range of

analyzable languages.
 Compilers that generate code for

multiple architectures.
– Analysis and architecture-independent code

generation can be the same for all machines.
– Example: GNU C compiler. GCC uses two

IRs: a tree-oriented IR and RTL.

compiler

X86 Sparc Mips

compiler

C C++ Java Fortran

ECE573, Fall 2005 116

Now the Specifics of
Semantic Action Routines

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 59

ECE573, Fall 2005 117

A Common Compiler Structure:
Semantic Actions Generate ASTs

 In many compilers, the sequence of
semantic actions generated by the
parser build an abstract syntax tree
(AST, or simply syntax tree.)

 After this step, many compiler passes
operate on the syntax tree.

ECE573, Fall 2005 118

Tree Traversals
After the AST has been built, it is traversed

several times, for
 testing attributes of the tree (e.g., type

checking)
 testing structural information (e.g., number of

subroutine parameters)
 optimizations
 output generation.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 60

ECE573, Fall 2005 119

Semantic Actions and LL/LR Parsers
 Actions are called either by parsing routines or

by the parser driver. Both need provisions for
semantic record parameter passing

 Example:
 <if-stmt> → IF <expr> #start-if THEN <stmt-list> ENDIF #finish-if

 For LL parsers, semantic actions are perfect fits,
thanks to their predictive nature

 In LR parsers, productions are only recognized
at their end. It may be necessary to split a
production, generating “semantics hooks”
<if-stmt> → <begin-if> THEN <stmt-list> ENDIF #finish-if
<begin-if> → IF <expr> #start-if

passing semantic record

ECE573, Fall 2005 120

Semantic Records
or: how to simplify the management of semantic information

Idea: Every symbol (of a given production) has an
associated storage item for semantic information,
called semantic record.

 Semantic records may be empty (e.g., for “;” or <stmt-
list>).

 Control statements often have 2 or more actions.
 Typically, semantic record information is generated by

actions at symbols and is passed to actions at the end
of productions.

A good organization of the semantic records is the
semantic stack.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 61

ECE573, Fall 2005 121

Semantic Stack Example

 consider a:=b+1 (Grammar on slide 40)
 sequence of parse actions invoked:

 process_id, process_id, process_op, process_lit,
gen_infix, gen_assign

process_id

a

process_id

a
b

process_op

a
b
+

process_lit

a
b
+
1

gen_infix

a
b+1

gen_assign

ECE573, Fall 2005 122

Action-Controlled Semantic
Stack

 Action routines can push/pop semantic
records directly onto/from the stack.

 This is called action-controlled stack.
– Disadvantage: stack management has to

be implemented in action routines by you,
the compiler writer.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 62

ECE573, Fall 2005 123

LR Parser-Controlled Stack
The idea:
 Every shift operation pushes a semantic record onto the

semantic stack, describing the token.
 At a reduce operation, the production produces a semantic

record and replaces all RHS records on the stack with it.
The effect of this:
 The action procedures don’t see the stack. They only see the

semantic records in the form of procedure parameters.
 Therefore, the user of a parser generator does not have to deal

with semantic stack management. You only need to know that
this is how the underlying implementation works.

Example: YACC

ECE573, Fall 2005 124

LL Parser-Controlled Stack
Remember: the parse stack contains predicted symbols,

not the symbols already parsed.
 Entries for all RHS symbols (left-to-right) are also

pushed onto the semantic stack and gradually filled in.
 When a production is matched: the RHS symbols are

popped, the LHS symbol remains.
 Keep pointers to left,right,current,top symbol for each

production in progress. Recursively store these values
in a EOP (end of production) symbol as nonterminals
on the RHS are parsed.
– Algorithm and example on pages 238-241.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 63

ECE573, Fall 2005 125

Symbol Tables

Operations on Symbol Tables:
 create table
 delete table
 enterId(tab,string) returns: entryId, exists
 find(tab,string) returns: entryId, exists
 deleteEntry(entryId)
 addAttributes(entryId,attributes)
 getAttributes(entryId) returns: attributes

ECE573, Fall 2005 126

Implementation Aspects of
Symbol Tables

 Dynamic size is important. Space need
can be from a few to tens of thousands
of entries.
Both should be provided:
– dynamic growth for large programs
– speed for small programs

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 64

ECE573, Fall 2005 127

Implementation Schemes
 Linear list

– can be ordered or unordered
– works for toy programs only

 Binary search trees
– usually good solution. However, trees can be

unbalanced, especially if alphabetical keys are used
 Hash tables

– best variant. More complex. Good schemes exist
– dynamic extension unclear
– issues: clustering and deletion

Languages such as Java and C++ provide libraries!

ECE573, Fall 2005 128

Dealing with Long Identifiers

 can be a waste of space
 one solution is to store strings in a

separate string array

name
length = 2
other
attributes

i1.exp.the_weather_forecast_of_tomorrow.i.the_weather_forecast_of_today.

name
length = 3
other
attributes

name
length =32
other
attributes

name
length = 1
other
attributes

name
length =29
other
attributes

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 65

ECE573, Fall 2005 129

Symbol Table Issues

 Symbol tables can be one per program block
– size can be smaller
– issue of dynamic size still remains
– deletion in hash tables is less of a problem

 Overloading (same name used for different
identifiers)
– keep symbols together. Context will choose

between them
– name “mangling” in C++

ECE573, Fall 2005 130

Symbol Table Attributes

 Examples:
– Identifier and TypeDescriptor in Pascal

(textbook p. 321/322)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 66

ECE573, Fall 2005 131

Runtime Storage Organization
(remember this from your OS course?)

 Activation records (will be discussed later)
 Heap allocation

– explicit malloc, free
– implicit heap allocation

(e.g., Lisp)

 Program layout in memory

 Procedure parameters (function pointers,
formal procedures)

program

constants
static data

stack

heap

ECE573, Fall 2005 132

Processing Declarations
(overview)

 Attributes and implementation techniques of symbol
tables and type descriptors

 Action routines for simple declarations
– semantic routines for processing declarations and creating

symbol table entries

 Action Routines for advanced features
– constant declarations
– enumeration types
– subtypes
– array types
– variant records
– pointers
– packages and modules

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 67

ECE573, Fall 2005 133

Processing Expression and Data
Structure References

 Simple identifiers and literal constants
 Expressions

– Tree representations X*Y + Z

 Record/struct and array references
A[i,j] → A + i*dim_1 + j (if row major)
R.f → R + offset(f)

 Strings
 Advanced features

+

Z*

YX

ECE573, Fall 2005 134

Translating Control Structures

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 68

ECE573, Fall 2005 135

IF Statement Processing

IF-statement → IF #start B-expr #test THEN Stmts
 { ELSIF #jump #else_label B-expr #test
 THEN Stmts }
 Else-part
 ENDIF #out_label
Else-part → ELSE #jump #else_label Stmts
Else-part → #else_label

Semantic
record :

struct if_stmt {
 string out_label;
 string next_else_label;
}

ECE573, Fall 2005 136

Code for
IF statement

 Evaluate B-expr1
 beq res1 Else1
 Code for Stmts1
 jmp Endif
Else1:
 Evaluate B-expr2
 beq res2 Else2
 Code for Stmts2
 jmp Endif
Else2:
 . . .
ElseN-1:
 Evaluate B-exprN
 beq resN ElseN
 Code for StmtsN
 jmp Endif
ElseN:
 Code for StmtsN+1
Endif:

Only blue code is
generated by IF construct
action routines

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 69

ECE573, Fall 2005 137

Loop Processing
While-Stmt → WHILE #start B-expr #test
 LOOP Stmts ENDLOOP #finish

For-Stmt → FOR Id #enter IN Range
 #init LOOP Stmts ENDLOOP #finish

Semantic
record :

struct while_stmt {
 string top_label;
 string out_label;
}

Semantic
record :

struct for_stmt {
 data_object id;
 data_object limit_val;
 string next_label, out_label;
(boolean reverse_flag;)
}

ECE573, Fall 2005 138

Code for
WHILE
statement

BeginWhile:
 Evaluate B-expr
 beq res1 EndWhile
 Code for Stmts
 jmp BeginWhile
EndWhile:

Only blue code is
generated by IF construct
action routines

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 70

ECE573, Fall 2005 139

Code for
count-up
FOR
statement

 compute LowerBound
 compute UpperBound
 cmp LowerBound UpperBound res1
 bgt res1 EndFor
 index = LowerBound
 limit = UpperBound
Loop:
 Code for Stmts
 cmp index limit res2
 beq res2 EndFor
 inc index
 jmp Loop
EndFor:

Only blue code is
generated by IF construct
action routines

ECE573, Fall 2005 140

CASE Statement Processing
Case-Stmt → CASE Expr #start IS When-list
 Others-option ENDCASE ; #finish_case
When-list → { WHEN Choice-list : Stmts #finish-choice }
Others-option → ELSE #start_others : Stmts #finish-choice
Others-option → #no_others
Choice-list → Choice { | Choice }
Choice → Expr #append_val
Choice → Expr .. Expr #append_range

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 71

ECE573, Fall 2005 141

Code for
CASE
 statement

 Evaluate Expr
 cmp Expr MinChoice res1
 blt res1 Others
 cmp Expr MaxChoice res2
 bgt res2 Others
 jumpx Expr Table-MinChoice
L1: Code for Stmts1
 jmp EndCase
 . . .
LN: Code for StmtsN
 jmp EndCase
Others: Code for Stmts in Else clause
 jmp EndCase
Table: jmp L1
 . . . (jmp Lx or jmp Others)
 jmp LN
EndCase:

Only blue code is
generated by IF construct
action routines

#start

#append_val

#finish_choice

#finish_choice
#append_val

#start_others
#finish_choice

#finish_case

Finish_case needs to back patch here

ECE573, Fall 2005 142

Semantic Record for
CASE statement

struct case_rec {
 struct type_ref index_type;
 list_of_choice choice_list;
 /* address of the JUMPX tuple (for back patching): */
 tuple_index jump_tuple;
 /* target of branches out:*/
 string out_label;
 /* label of the code for ELSE clause: */
 string others_label;
}

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 72

143

Code Generation for
Subroutine Calls

Parameter Types
Activation Records
Parameter Passing

Code Examples

ECE573, Fall 2005 144

Parameter Types

 Value Parameters :
– copy at subroutine call. For large objects this can

be done by either the caller or the callee.
– an expression can be passed

 Result Parameters:
– are copied at the end of the subroutine to return

values to the caller
 Value-Result Parameters:

– “copy-in-copy-out”. Enhances locality.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 73

ECE573, Fall 2005 145

Parameter Types (2)

 Reference (var) parameters:
– the address is passed in to the subroutine.
– this is different from value-result, although

for the user the semantics may look the
same.

 Read-Only parameters:
– small objects are passed by value, large

parameters are passed by reference.

ECE573, Fall 2005 146

Dope Vectors

Additional information - no seen by the
programmer - about parameters may need to
be passed into subroutines, for example:
– bounds (on the parameter value)
– length (of a string or vector)
– storage allocation information
– data allocation information

Good compile-time analysis can reduce the
need for passing dope vector information

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 74

ECE573, Fall 2005 147

Saving Registers
 Subroutines generally don’t know which registers

are in use by the caller. Solutions:
– caller saves all used registers before call
– callee saves the registers it uses
– caller passes to the callee a bit vector describing used

registers (good only if hardware supported).

Simple optimizations are useful (e.g., don’t save
registers if called subroutine does not use any
registers)

ECE573, Fall 2005 148

Activation Records
Return Value

Actual parameters

Caller’s return address

Caller’s frame pointer

Static links (displays =
frame pointers of outer scopes)

Callee register save area

Local variables

St
ac

k

FP

A typical
activation record
(or stack frame)

ge
ne

ra
te

d
by

 c
al

le
r

ge
ne

ra
te

d
by

 c
al

le
e

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 75

ECE573, Fall 2005 149

Example Subroutine Call, Stack Frame

int SubOne(int a, int b) {
 int l1, l2;
 I1 = a;
 l2 = b;
 return l1+l2;
 };

z = SubOne(x,2*y);

return value
x

2*y
return address
saved frame ptr

l1
l2

. . .

st
ac

k

R6
(FP)

push
push x
mul 2 y t1
push t1
jsr SubOne
pop
pop
pop z

link 3
move $P1 $L1
move $P2 $L2
add $L1 $L2 t2
move t2 $R
unlink
ret

3-address code:
push
push x
load y R1
muli 2 R1
push R1
jsr SubOne
pop
pop
pop R1
store R1 z

link R6 3
load 3(R6) R1
store R1 -1(R6)
load 2(R6) R2
store R1 -2(R6)
load -1(R6) R1
add -2(R6) R1
store R1 4(R6)
unlink
ret

assembly code:

ECE573, Fall 2005 150

Example2
(size(Class1)=100)

int SubOne(int & a, Class1 b) {
 int l1, l2;
 I1 = a;
 l2 = b.f4;
 return l1+l2;
 };

z = SubOne(x,objy);

return value
&x

&objy
return address
saved frame ptr

l1
l2

b.f100
…

b.f2
b.f1

st
ac

k

R6
(FP)

push
push &x
push &y
jsr SubOne
pop
pop
pop z

link 102
blkmv $(P2) $L3 100
move $(P1) $L1
move $L3%4 $L2
add $L1 $L2 t2
move t2 $R
unlink
ret

3-address code:
push
push &x
push &y
jsr SubOne
pop
pop
pop R1
store R1 z

link R6 102
load 2(R6) R1
load &-102(R6) R2
blkmv R1 R2 100
load 3(R6) R1
load (R1) R2
store R2 -1(R6)
load -99(R6) R1
store R1 -2(R6)
load -1(R6) R1
add -2(R6) R1
store R1 4(R6)
unlink
ret

assembly code:

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 76

ECE573, Fall 2005 151

Static Allocation of Activation
Records

 Dynamic setup of activation records takes
significant time (for short subroutines).

 Instead of on the stack, the compiler can
allocate local variables and subroutine
parameters in static memory locations.

 This will not work for recursive and parallel
code (reentrancy is important in both cases)

152

Code Generation and
Optimization

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 77

ECE573, Fall 2005 153

Local versus Global Optimization

 Local optimizations:
operation is within basic block (BB).
– A BB is a section of code without branches

(except possibly at the end)
– BBs can be from a few instructions to

several hundred instructions long.
 Global optimizations will be introduced

later.

ECE573, Fall 2005 154

Assembly Code Generation
 A simple code generation approach:

macro-expansion of IR tuples
 Each tuple produces code independently of its

context:
advantage: simple, straightforward, easy to debug
disadvantage: no optimization
 E.g., (+,a,b,c) generates store C
 (+c,d,e) generates a (redundant) load C

 Peephole optimizations help a little

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 78

ECE573, Fall 2005 155

Peephole Optimizations
 Simple pattern-match optimizations usually

following a simple code generator.
e.g., pattern: store R X, followed by load R X
 → delete load R X

 Can recognize patterns that can be
performed by special instructions (machine-
specific).
e.g., pattern: sub 1 R, jgt label
 → replace by sbr R label

ECE573, Fall 2005 156

Peephole Optimizations
 Constant folding:

– ADD lit1 lit2 result ⇒ MOVE lit1+lit2 result

– MOVE lit1 res1 ⇒ MOVE lit1 res1
 ADD lit2 res1 res2 MOVE lit1+lit2 res2

 Strength reduction
– MUL op 2 res ⇒ SHIFTL op 1 res
– MUL op 4 res ⇒ SHIFTL op 2 res

 Null sequences
– ADD op 0 res ⇒ MOVE op res
– MUL op 1 res ⇒ MOVE op res

 Combine operations
– MOVE A Ri ; MOVE A+1 Ri+1 ⇒ DBLMOVE A Ri
– JEQ L1 ; JMP L2 ; L1: ⇒ JNE L2

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 79

ECE573, Fall 2005 157

More Peephole Optimizations
 Simplify by algebraic laws

– ADD lit op res ⇒ ADD op lit res
– SUB op 0 res ⇒ NEG op res

 Special case instructions
– SUB 1 R ⇒ DEC R
– ADD 1 R ⇒ INC R
– MOVE 0 R ; MOVE R A ⇒ CLR A

 Address mode operations
– MOVE A R1 ; ADD 0(R1) R2 ⇒ ADD @A R2
– SUB 2 R1 ; CLR 0(R1) ⇒ CLR --(R1)

ECE573, Fall 2005 158

Better Code Generation
Schemes

 Keep “state” information

an input IR tuple just changes the state. Code is
generated as necessary when the machine
changes state

 Generate code for an IR subtree at once
 Template matching, code generation for

entire template

State
machine

IR tuples code

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 80

ECE573, Fall 2005 159

Code Generation steps

 4 steps:
– instruction selection

 this is very machine-specific. Some machines
may provide complex instructions that perform
2 or more tuple (3-address) operations.

– address mode selection
– register allocation
– code scheduling (not in text book)
in reality, these tasks are intertwined

We will
focus
on
these
two
topics

ECE573, Fall 2005 160

Address Mode Selection
 Even a simple instruction may have a large

set of possible address modes and
combinations. For example:

 Add a b c
 can be indexed, indirect, live register,
 unassigned register

 can be literal, indexed, live register, dead
 register

There are more than 100 combinations

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 81

ECE573, Fall 2005 161

More Choices for Address Mode

 Auto increment, decrement
 Three-address instructions
 Distinct address and data registers
 Specialized registers
 “Free” addition in indexed mode:
 MOVE (Reg)offset

(This is very useful for subscript operations)

ECE573, Fall 2005 162

The textbook discusses Common Subexpression
Elimination and Aliasing at this point.

These topics will be discussed later.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 82

ECE573, Fall 2005 163

Register Allocation Issues
 1. Eliminate register loads and stores
 store R3,A

 … we want to recognize that R3 could be reused

 load R4,A

 2. Reduce register spilling.
– Ideally all data is kept in registers until the end of the basic block.

However, there may not be enough registers.
 What registers should be freed?

Optimal solutions are NP-complete problems
THE key question

ECE573, Fall 2005 164

Register Allocation Terminology
 Registers can be:

– unallocated: carry no value
– live: carry a value that will be used later
– dead: carry a value that is no longer needed

 Register association lists:
variables (including temporaries) that are associated with a

register can be
– live (L, used again in the basic block before changed) or

dead(D)
– to be saved(S) at the end of the BB or not to be saved (NS)

 corresponds to “dirty” attribute in previous algorithm

 Liveness Analysis of Variables:
– a backwards pass through the code, detecting use and

definition points to determine these attributes.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 83

ECE573, Fall 2005 165

When to free a register?
 Assume a cost function for register and memory

references. E.g., memory ref: 2, register ref: 1
 Freeing costs:

– 0 (D,NS), (D,S) (no disadvantage in saving right away)
– 2 (L,NS) (will need to reload later)
– 4 (L,S) (store now, reload later)

 When a register is needed, look for the cheapest. If same
cost, free the one with the most distant use, then load the
new value and set the status to (L,NS) or (D,NS)
– Note: Assignment to a variable makes previous status (D,NS)

 This cost may also be used to choose between code
generation alternatives, e.g., commutative operations.

 Algorithms on pages 564 .. 566

ECE573, Fall 2005 166

Register Allocation

A := B*C + D*E
D := C+(D-B)
F := E+A+C
A := D+E

1. (*,B,C,T1)
2. (*,D,E,T2)
3. (+,T1,T2,T3)
4. (:=,T3,A)

5. (-,D,B,T4)
6. (+,C,T4,T5)
7. (:=,T5,D)

8. (+,E,A,T6)
9. (+,T6,C,T7)
10.(:=,T7,F)

11.(+,D,E,T8)
12.(:=,T8,A)

Load B,R1
* C,R1
Load D,R2
* E,R2
+ R2,R1
Store A,R1

Load D,R1
- B,R1
Load C,R2
+ R1,R2
Store D,R2

Load E,R1
+ A,R1
+ C,R1
Store F,R1

Load D,R1
+ E,R1
Store A,R1

An example without optimized register allocation

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 84

ECE573, Fall 2005 167

Register Allocation Exercise

Optimized register allocation,
textbook, p 568

reduces the cost of storage-to-register
and register-to-register operations from
34 to 25

ECE573, Fall 2005 168

Aliasing: A Problem for Many
Optimizations

 A big problem in compiler optimizations is to recognize aliases.
 Aliases are “different names for the same storage location”
 Aliases can occur in the following situations

– pointers may refer to the same variable
– arrays may reference the same element
– subroutines may pass in the same variable under two different names
– subroutines may have side effects
– Explicit storage overlapping

 The ramification here is, that we cannot be sure that variables hold
the values they appear to hold. We need to conservatively mark
values as killed.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 85

ECE573, Fall 2005 169

Aliasing and Register Allocation
 on load of a variable x:

for each variable aliased to x that is on a register association list:
save it. (so that we are guaranteed to load the correct value)

 on store of a variable x:
for each variable aliased to x that is on a register association list:

remove it from the list. (so that we will not use a stale value
later on)

 Analysis:
– Most conservative: all variables are aliased
– Less conservative: name-only analysis
– Advanced: array subscript analysis, pointer analysis
At subroutine boundaries: often conservative analysis. All (global

and parameter) variables are assumed to be aliased.

ECE573, Fall 2005 170

Virtual Register Allocation
A register allocation algorithm can start from two possible situations:
1. All variables are in memory (this is the case when starting from 3-

address code) -- the textbook algorithm starts from this point

2. Variables are placed in virtual registers -- the Cooper/Torczon algorithms
have this starting point

An unlimited number of virtual registers is available.

Allocation of virtual registers is easy:

Whenever a new register is needed, an additional
register number is taken.

Move memory to register: either before the first use
or at the beginning of the BB

Move register to memory: at the end of the BB if the
register has been written to

Virtual Register allocation is also necessary when performing code
scheduling before register allocation -- Explain why.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 86

ECE573, Fall 2005 171

Top-Down Register Allocation
(A Simple Algorithm by Cooper/Torczon 625)

 Basic idea:
In each basic block (BB) do this:
– find the number of references to each variable
– assign available registers to variables with the

most references
Details:
– keep some free registers for operations on

unassigned variables
– store dirty registers at the end of the BB. Do this

only for variables (not for temporaries)
 not doing this for temporaries exploits the fact that they

are never live-out of a block. This is knowledge that
would otherwise need global analysis.

ECE573, Fall 2005 172

Bottom-Up Register Allocation
(A Better Algorithm by Cooper/Torczon p. 626)

for each tuple op A B C in a BB do :
rx = ensure(A) // make sure A is in a register
ry = ensure(B) // make sure B is in a register
if rx is no more used then free(rx)
if ry is no more used then free(ry)
rz = allocate(C) // make a register available for C
mark rz dirty
generate(op,rx,ry,rz) // emit the actual code

for each dirty register r do :
 generate(“move”,r,ropr())
Cooper/Torczon’s algorithm assumes A,B,C are virtual registers. We will

assume they are variables.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 87

ECE573, Fall 2005 173

ensure(opr)
if opr is already in a register r then
 return r
else
 r = allocate(opr)
 generate(“move”,opr,r)
 return r

allocate(opr)
if there is a free register r then
 take r
else
 find r with the most distant next use
 free (r)
 mark r associated with opr;
return r

free(r)
if r is dirty then
 generate(“move”,r,r→opr())
mark r free

Next_use analysis:
one backward pass through
the BB is sufficient.

Bottom-Up Register Allocation continued

ECE573, Fall 2005 174

Other Register Allocation Schemes
Variations of the presented scheme:
 consider more than one future use
 register “coloring”
 better cost model: consider instruction size and timing;

factor in storage-to-register instructions
 include more address modes
 include register-to-register moves
 consider peephole optimizations
Register allocation is still a research area.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 88

ECE573, Fall 2005 175

Context-sensitive Code Generation
(considering a larger window of code, but still within a basic block)

Generating code from IR trees.

Idea:
 if evaluating R takes more registers than L, it

is better to
– evaluate R
– save result in a register
– evaluate L
– do the (binary) operation

op

RL

ECE573, Fall 2005 176

Determining Register Needs

Assuming register-to-register and storage-to register
instructions

op

IDID
1 0

For ID nodes (these are leaf nodes):
• left: 1 register
• right: 0 registers

op
L R Register need of the combined tree:

 X =
• L+1 , if R = L
• max(R,L) , if R ≠ L

X

Left
branch

Right
branch

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 89

ECE573, Fall 2005 177

Algorithm for Code Generation
Using Register-Need Annotations

Recursive tree algorithm. Each step leaves result in R1
(R1 is the first register in the list of available registers)

op

ID
0 Case 1: right branch is an ID:

• generate code for left branch
• generate OP ID,R1 (op,R1,ID,R1)

op
R Case 2: min(L,R) >= max available registers:

• generate code for right branch
• spill R1 into a temporary T
• generate code for left branch
• generate OP T,R1

L

ECE573, Fall 2005 178

Tree Code Generation continued

Case 3: R < max available registers:
• generate code for left branch
• remove first register (R1) from available register list
• generate code for right branch (result in R2)
• generate OP R2,R1

Case 4: L < max available registers:
• temporarily swap R1 and R2
• generate code for right branch
• remove first register (R2) from available register list
• generate code for left branch (result in R1)
• generate OP R2,R1

Remaining cases: at least one branch needs fewer registers than available

min(R,L)
 <

 available regs

op
RL

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 90

ECE573, Fall 2005 179

Example Tree Code
Generation

+(2)

-(1) +(2)

+(1) *(1)A(1) B(0)

C(1) D(0) E(1) F(0)

(A-B)+((C+D)+(E*F)) Ra holds Rb holds
Load C,Rb -- C
Add D,Rb -- C+D
Load E,Ra E C+D
Mult F,Ra E*F C+D
Add Ra,Rb -- C+D+E*F
Load A,Ra A C+D+E*F
Sub B,Ra A-B C+D+E*F
Add Rb,Ra A-B+C+D+E*F --

available regs.
 Ra Rb
 Rb Ra
 Rb Ra
 Ra
 Ra
 Rb Ra
 Ra
 Ra
 Ra Rb

ECE573, Fall 2005 180

Code Scheduling
 Motivation:

processors can overlap the execution of consecutive
instructions, but only if they are not dependent on
each other

 Problem:
this is not independent of the other register

generation issues. For example: reordering
instructions may create register conflicts

mult R2,R3
load X,R0
add R0,R4

load X,R0
mult R2,R3
add R0,R4

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 91

ECE573, Fall 2005 181

Processor Models for Code
Scheduling

1. Processor enforces dependences.
Compiler reorders instructions as much as possible
⇒Processor guarantees correctness

2. Processor assumes that all operands are
available when instruction starts
Compiler inserts NOPs to create necessary delays
⇒Compiler guarantees correctness

ECE573, Fall 2005 182

Code Scheduling Goal
 Annotate each operation with the cycle in

which it can start to execute
– operations can execute as soon as their operands

are available
– each operation has a delay, after which its result

operand becomes available
– the processor architecture defines how many and

what type of operations can start in the same cycle
 Minimize the time until all operations

complete

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 92

ECE573, Fall 2005 183

Precedence Graph
 shows operand dependencies of operations
 may also show anti-dependences on registers

– anti-dependence: an operation that reuses a
register must wait for the completion of the
previous use of this register

– anti-dependences may be removed by renaming
registers

 can be annotated to show cumulative
latencies

ECE573, Fall 2005 184

Precedence Graph Example

a: loadAI r0, 0 ⇒ r1
b: add r1, r1 ⇒ r1
c: loadAI r0, 8 ⇒ r2
d: mult r1, r2 ⇒ r1
e: loadAI r0, 16 ⇒ r2
f: mult r1, r2 ⇒ r1
g: loadAI r0, 24 ⇒ r2
h: mult r1, r2 ⇒ r1
i: storeAI r1 ⇒ r0, 0

a c

b e

 d g

 f

 h

 i

5

7

89

1010

1213 Weights (=latencies)
memory op: 3
mult: 2
others: 1

 operation must
3  start no later than
 3 cycles before
 end of block

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 93

ECE573, Fall 2005 185

Precedence Graph Example:
Removing Anti-Dependences

a: loadAI r0, 0 ⇒ r1
b: add r1, r1 ⇒ r2
c: loadAI r0, 8 ⇒ r3
d: mult r2, r3 ⇒ r4
e: loadAI r0, 16 ⇒ r5
f: mult r4, r5 ⇒ r6
g: loadAI r0, 24 ⇒ r7
h: mult r6, r7 ⇒ r8
i: storeAI r8 ⇒ r0, 0

a: loadAI r0, 0 ⇒ r1
b: add r1, r1 ⇒ r1
c: loadAI r0, 8 ⇒ r2
d: mult r1, r2 ⇒ r1
e: loadAI r0, 16 ⇒ r2
f: mult r1, r2 ⇒ r1
g: loadAI r0, 24 ⇒ r2
h: mult r1, r2 ⇒ r1
i: storeAI r1 ⇒ r0, 0

Note, register allocation and scheduling have conflicting demands. Ideally, the
two techniques should be applied together. However, due to their complexity,
most compilers separate them.

The graph on the previous slide does not show anti dependences.
Here’s how to remove them:

ECE573, Fall 2005 186

Local List Scheduling
 local = within a basic block
 outline of the algorithm:

1. rename registers to remove anti-dependences
2. build precedence graph
3. assign priorities to operations

We use the cumulative latency as the priority

4. iteratively select an operation and schedule it

What makes scheduling difficult?

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 94

ECE573, Fall 2005 187

List Scheduling Algorithm
Cycle ← 1
Ready ← leaves of P
Active ← Ø
while (Ready∪Active≠ Ø)
 if Ready ≠ Ø then
 remove an op from Ready
 S(op) ← Cycle
 Active ← Active ∪ op
 Cycle ← Cycle + 1

 for each op ∈ Active
 if S(op)+delay(op) ≤ Cycle then
 remove op from Active
 for each successor s of op in P
 if s is ready then
 Ready ← Ready ∪ s

P: the precedence graph

Ready: list of operations ready
to be scheduled

Active: operations being
executed (scheduled, not yet
completed)

delay(op): execution time of op

S(op): start time of op

ECE573, Fall 2005 188

Alternative List Scheduling
Schemes

 Priority Schemes make a big difference.
Possible Priorities:
– longest path that contains an op
– number of immediate successors
– number of descendants
– latency of operation
– increase priority for last use of a value

 Forward versus backward scheduling

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 95

ECE573, Fall 2005 189

Coordination Schemes for Register
Allocation and Instruction Scheduling
Scheme 1:
 Generate 3-address code
 Generate code, using any

number of registers
 Instruction scheduling

– List scheduling. Use
precedence graph with
removing anti-dependences

 Register allocation
– using the unmodified

Cooper/Torczon bottom-up
register allocation algorithm.

Scheme 2:
 Generate 3-address code
 Register allocation

– using the textbook register
tracking or the modified
bottom-up Cooper/Torczon
algorithm.

 Instruction scheduling
– List scheduling. Use

precedence graph without
removing anti-dependences

ECE573, Fall 2005 190

Global Program
Optimization and

Analysis

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 96

ECE573, Fall 2005 191

Motivation
 Local register allocation is not optimal

– All dirty registers are saved at the end of the basic block
 What is missing is information about the flow of

information across basic blocks
– Values may already be in registers at the beginning of the

block
– Value may be reused in the next block

 Solution approaches:
– Compute the LiveOut set of variables
– Deal with the difficulties

 There must be coordination of register use across blocks
 Define what you mean by “next use” if it is in a different block

 This leads to global register allocation, discussed later

ECE573, Fall 2005 192

Introductory Remarks

 What is an optimization
 Interdependence of optimizations
 What IR is best for optimizations?
 What improvements can we expect from

optimizations? Does it always improve?
 What is an optimizing compiler?
 Analysis versus Transformation

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 97

ECE573, Fall 2005 193

What is an Optimization?
Criterion 1: Code change must be safe

An optimizations must not change the answer
(the result) of the program. This can be
subtle:
– Is it safe to do
 this move?

– Code size can be important. Optimizations that
increase the code size may be considered unsafe
(we will ignore this for now, however)

DO i=1,n
 <loop-invariant expression>
 ...
ENDDO

What if the
expression is
a/n ?

ECE573, Fall 2005 194

What is an Optimization?
Criterion 2: Code change must be profitable
 The performance of the transformed program must be

better than before.
This is sometimes difficult to determine, because:
– the compiler does not have enough information about

machine costs, or it knows only average costs.
– the compiler does not have sufficient information about

program input data.
– the compiler may not have sufficiently powerful

analysis techniques.
Sometimes profiling is used to alleviate these problems.

Profiling works only for some average case!
 The code size must be smaller (not always important)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 98

ECE573, Fall 2005 195

Interdependence Of
Optimizations

Usually, optimizations are applied one-by-one.
 In reality they are interdependent.

For example: a = 3
b = 0
IF (b == a-2)
 a = 5
ENDIF

IF (a == 3)
 print “success”
ELSE
 print “failure”
ENDIF

ECE573, Fall 2005 196

Source and Code-level Optimizations
 Examples of source-level optimizations:

– eliminating unreachable code
– constant propagation (is also an analysis technique)
– loop unrolling (may also be done at instruction level)
– eliminating redundant bound checks
– loop tiling
– subroutine inline expansion (may not be an optimization)

 Examples of code-level optimizations:
– register allocation
– thorough use of instruction set and address modes
– cache and pipeline optimizations
– instruction-level parallelization
– strength reduction (may also be done at source level)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 99

ECE573, Fall 2005 197

Compiler Optimizations in
Perspective

 gain from (sequential program) optimizations :
– 25% - 50%

 gain from parallelization:
– 0-1000%

 gain from (manually) improved algorithms: 0 - ?
e.g. replacing a 10*n3 by a 50*n2 algorithm

 n=5 : no gain
 n=100 : 500-fold improvement

 important: some optimization techniques may decrease
performance in some code patterns!

ECE573, Fall 2005 198

Optimizing Compilers
 Term is used for compilers that use more than local,

basic block optimizations. They include some form of
global program analysis (analysis beyond basic
blocks, sometimes beyond individual subroutines).

 Optimizations are time-consuming. Apply them where
the return is biggest:
– in loops (repetitive program sections)
– at subroutine calls
– in frequently executed code (look at profile)

 “90/10 rule”: 10 % of the loops contain 90% of the
execution time

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 100

ECE573, Fall 2005 199

The Role of Program Analysis
Program analysis must precede many

optimizations.
– Control flow analysis determines where program

execution goes next
– Data flow analysis determines how program

variables are affected by program sections
– Data-dependence analysis determines which data

references in a program access the same storage
location.

(Sometimes data flow analysis is used as a generic
term for all these analyses)

ECE573, Fall 2005 200

Control Flow Analysis

A
IF (cond) THEN
 B
ELSE
 C
ENDIF
D

A

B C

D
Control-Flow Graph

(Text-book calls it Data-Flow Graph)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 101

ECE573, Fall 2005 201

Control Flow Analysis
Control flow imposes dependences

– the execution of a code block must wait until the
control conditions have been evaluated.

– This is true even if there are no data dependences.

Exercise: draw the
control flow graph
of this program
segment

d=100
IF (a==b) THEN c=d+e
ELSE
 IF (c==e) THEN d=0
ENDIF
b=b*2
DO i=d,e
 a[i]=0
ENDDO

202

Interprocedural Analysis

A small detour before we proceed with
transformations and analysis methods

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 102

ECE573, Fall 2005 203

A small detour through
Interprocedural Analysis

Analysis across subroutines is an even bigger
issue than analysis across basic blocks.

 Approaches:
– Subroutine inline expansion (a.k.a. inlining)

 Saves call overhead for small subroutines.
 Eliminates the need for interprocedural analysis

– Interprocedural analysis - extend analysis to traverse all
routines
 Eliminates (or reduces) conservative assumptions at subroutine

boundaries, such as
– the assumption that all variables seen by a subroutine

(parameters, global variables) are read and written.
– the assumption that all subexpressions are killed

ECE573, Fall 2005 204

IPA propagates
knowledge
gathered in one
subroutine to the
others.

This analysis may
need to be iterative.

subroutine sub1(x)
 ...
 localvar = x
 ...
subroutine sub2(y)
 ...
 localvar = y
 ...

A small detour through
Interprocedural Analysis

Main Program
a = 3
call sub1(a)
call sub2(a)

Example:
constant propagation

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 103

ECE573, Fall 2005 205

Building Definition and Use sets
– Def set: the set of variables written to
– Use set: the set of variables read
these sets are used by many optimizations

Given LocalUse and LocalDef of each subroutine:
Use(P) = LocalUse(P) ∪ Use(Q)

Def(P) = LocalDef(P) ∪ Def(Q)
Q ∈called(P)

Q ∈called(P)

A small detour through Interprocedural Analysis:
Interprocedural Dataflow Analysis

ECE573, Fall 2005 206

A small detour through Interprocedural Analysis:
Finding Local Def, Use

 Determining Def and Use sets within a
subroutine is easy.
Exercise: determine Def, Use sets for

 In the presence of control flow one can
analyze may or must definitions and uses.
– Simple analysis: may def/use analysis
– More advanced: flow-sensitive analysis

c = d+e
d = a[j]
If (a<b) then
 a[j] = sb[i,k]
 *p = *q
endif

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 104

ECE573, Fall 2005 207

A small detour through Interprocedural Analysis:
Algorithm for Computing Def, Use

Sets Interprocedurally

 In non-recursive programs:
– compute Def, Use sets bottom-up in call tree

 In recursive programs:
– iterate until the sets don’t change any more
– (Algorithm on page 632)

ECE573, Fall 2005 208

A small detour through Interprocedural Analysis:
Exercise

 find Def, Use sets for program on p. 632
 how does this information help the

program analysis?

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 105

209

Three Basic Optimizations

 Common subexpression elimination
 Factoring loop-invariant expressions
 Strength reduction

ECE573, Fall 2005 210

Common Subexpression Elimination
An optimization that can simplify the generated code

significantly

CSE removes redundant computation
1: A = B+C*D keep the result in a temporary
 and reuse for stmt 2
2: E = B+C*D

1: A = B+C*D
 B = <new value>
2: E = B+C*D

Difficulty: recognize when the expression is “killed”

B is killed. The expression it
held is no longer “(a)live”.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 106

ECE573, Fall 2005 211

Value Numbering
(used by CSE)

Give unique numbers to expressions that are
computed from the same operands X
Operands are the same if

1. Their name is the same
2. They were not modified since the previous expression was

computed
The Value Numbering compiler algorithm keeps a “last defined”

attribute for every variable and for every temporary holding
an expression.

The Use of Value Numbering in CSE is obvious:
A temporary holding the result of expression_1 can be reused

in place of expression_2 if the two expressions have the
same value number.

ECE573, Fall 2005 212

When to Apply CSE in the
Compiler?

 Option 1: when generating code
– suppress code generation for such

subexpressions and use the temporary holding the
needed value instead, or

 Option 2: after initial code generation
– replace the (already generated code of the)

subexpression with the temporary.

Proper bookkeeping is necessary to mark the
temporaries as alive and still needed.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 107

ECE573, Fall 2005 213

CSE Examples

A = B + C
D = B + C
B = X + Y
E = B + C

A = B + C + D
D = C + D
B = B + C + D
A = B + C

ECE573, Fall 2005 214

CSE: Detecting Equivalent
Expressions

 Possible method: create a name for the
temporary that is derived from the operators
and operands in a unique way.

 B = X+Y*Z temp name: X_p_Y_t_Z
 X = X+Y-Z temp name: X_p_Y_m_Z
 D = X+Y*Z temp name: X_p_Y_t_Z

same temp name :
potentially a common
subexpression

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 108

ECE573, Fall 2005 215

CSE Example with Aliasing
Effects

 Do value numbering on the following
code :

 Basic idea: in addition to doing value numbering on
the “pointer”, do value numbering on the “value
pointed to” as well.

A(i,j) := A(i,j)+B+C;
A(i,j+1) := A(i,j)+B+D;
A(i,j) := A(i,j)+B;

ECE573, Fall 2005 216

Interprocedural CSE

 So far, we have discussed
intra-procedural CSE.

 What would it take, to extend the
optimization across procedure
boundaries?

⇒ Will be discussed later, after Global Data Flow Analysis

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 109

ECE573, Fall 2005 217

Factoring Loop-invariant
Expressions

 loop-invariant expressions can be moved in
front of the loop.

 the idea is similar to common subexpression
elimination (reuse computation), however, the
action is different:
– find Def Sets
– find relevant Variables of expressions (i.e., the

variables that are part of the expression)
– if the two sets are disjoint, it’s a loop-invariant expr.

ECE573, Fall 2005 218

Factoring Loop-invariant
Expressions (2)

 Array address expressions are important
subjects of this optimization, although this is
not obvious from the program text
 for example, in A(i,j,k)
 the implicit expression is i*dim(j,k)+j*dim(k)+k
(assuming row-major storage)

 Safety and profitability is not always
guaranteed
zero-trip loops may never execute the expression

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 110

ECE573, Fall 2005 219

Strength Reduction
Replace expensive operations with less-expensive

ones. Typically, multiplication is replaced by
addition.

 Note, the reverse transformation is important too:
→ Finding Induction variables: variables that are
incremented by a constant per loop iteration
– examples: the loop variable, statements of the form
 ind = ind + const

 (generalized induction variables: increment can be
another induction variable or a multiplication)

ECE573, Fall 2005 220

Strength Reduction Analysis

Induction expression:
 I*C + D

Note, the induction expressions are
different for each loop of a nest

Offset
(loop invariant)

Coefficient
(loop invariant)Loop variable

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 111

ECE573, Fall 2005 221

Strength Reduction
Transformation

 Algorithm :
– Recognize induction expression, E
– replace each occurrence of E with temporary T
– Insert T := I0 *C+D before loop

(I0 is initial value of I in the loop)

– increment T by C*S at iteration end
 (S is the loop stride)

(Algorithm on page 642)

222

Global Dataflow Analysis

A general framework for program
analysis

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 112

ECE573, Fall 2005 223

Global Dataflow Analysis

Analysis of how program attributes change
across basic blocks

Dataflow analysis has many diverse
applications. A few examples:
– global live variable analysis
– uninitialized variable analysis
– available expression analysis
– busy expression analysis

(some researchers have suggested to use the term information
propagation instead of data flow analysis)

ECE573, Fall 2005 224

Live Variable Analysis
Application: the value of dead variables need

not be saved at the end of a basic block

basic
block b

LiveIn(b)

LiveOut(b)

Successors S

LiveUse(b)
(variables that
are used before
defined)

LiveOut(b) = ∪ LiveIn(i) i∈ S

LiveIn(b) ⊇ LiveUse(b)
LiveIn(b) ⊇ LiveOut(b) - Def(b)

LiveIn(b) = LiveUse(b) ∪ (LiveOut(b) - Def(b))

This is called a
backward-flow
problem

LiveUse(b) and Def(b)
Are properties of b.
They can be analyzed
 by looking a b only.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 113

ECE573, Fall 2005 225

Live Variable Analysis
A := 1
if A=B then
 B := 1
else
 C := 1
end if
D := A+B

A:=1
A=B

B:=1 C:=1

D:=A+B

b1

b3

b4

b2

block Def LiveUse
b1 {A} {B}
b2 {B} ∅
b3 {C} ∅
b4 {D} {A,B}

block LiveIn LiveOut
b1 {B} {A,B}
b2 {A} {A,B}
b3 {A,B} {A,B}
b4 {A,B} ∅

ECE573, Fall 2005 226

Uninitialized Variable Analysis

basic
block

UninitIn(b)

UninitOut(b)

Predecessors P

UninitIn(b) = ∪ UninitOut(i)

UninitOut(b) ⊇ UninitIn(b) - Init(b)
UninitOut(b) ⊇ Uninit(b)

UninitOut(b) = (UninitIn(b) - Init(b)) ∪ Uninit(b)

i∈P

Init(b): variables known to be initialized
Uninit(b): variables that become uninitialized

• assigning “uninit”
• new variables

This is a forward-flow problem

Determine variables that are possibly not initialized

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 114

ECE573, Fall 2005 227

Solving Data Flow Equations
 A-cyclic CFG (trivial case):

– Start at first node, then successively solve equations for
successors or predecessors (depending on forward or
backward flow problem.)

 Iterative Solutions:
– Begin with the sets computed locally for each basic block

(generically called the Gen and Kill sets)
– Iterate until the In and Out sets converge
Is convergence guaranteed?

 yes, for dataflow graphs with a unique starting node and
one or more ending nodes

 Solutions specific to structured languages:
exploit knowledge about the language constructs that build flow

graphs: if and loop statements

ECE573, Fall 2005 228

Any-Path Flow Problems

 So far, we have considered “any-path”
problems: a property holds along some path

In our examples:
– variable is uninitialized for basic block b if it

is uninitialized after any predecessor of b

– variable is live if it is used in any successor

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 115

ECE573, Fall 2005 229

All-Paths Flow Problems
 All-Paths problems require a property to hold

along all possible paths.
 Examples:

– Availability of expressions

– Very-busy expressions

AvailIn(b) = ∩ AvailOut(i)
AvailOut(b) = Computed(b) ∪ (AvailIn(b)-Killed(b))

VeryBusyOut(b) = ∩ VeryBusyIn(i)
VeryBusyIn(b) = Used(b) ∪ (VeryBusyOut(b)-Killed(b))

ECE573, Fall 2005 230

General Data Flow Equations

Out(b) = Gen(b) ∪ (In(b)-Killed(b))
In(b) = ∪ Out(i)

i∈ P(b)

In(b) = Gen(b) ∪ (Out(b)-Killed(b))
Out(b) = ∪ In(i)

i∈ S(b)

Out(b) = Gen(b) ∪ (In(b)-Killed(b))
In(b) = ∩ Out(i)

i∈ P(b)

In(b) = Gen(b) ∪ (Out(b)-Killed(b))
Out(b) = ∩ In(i)

i∈ S(b)

Forward Flow Backward Flow

Any
Path

All
Paths

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 116

ECE573, Fall 2005 231

Exercise: Available Expression Analysis
c = x
e = 5
a = b+c/d

e = f - g
g = b+c

c= 5
e = c/d

a = f - g
b = c/d+a

b1

b3

b4

b2

Notes:
• Precise definition of the meaning of the
information to be analyzed is important. Here:
an available expression is an expression
(given by its relevant variables and
operators) whose up-to-date value is
available in a temporary variable.

• Note that the value of an available
expression from two merged control paths is
not necessarily the same. E.g., the value of
c/d in b4, depends on the control path taken.

• Be clear about the information sets to be
used in the DFA. Here: the sets of all
expressions and subexpressions.

ECE573, Fall 2005 232

Other Data Flow Problems and
Applications of DF Analyses

 Reaching Definitions (Use-Def Chains)
– determining use points of assigned values

 Def-Use Chains
– Can be computed from U-D chains or as a new data flow

problem.
 Constant Propagation

– determining variables that hold constant values.
– Can be computed based on Reaching Definition information

or with an extended data flow analysis
 Copy propagation

– replacing variables by their assigned expressions and
eliminating assignments. A more advanced form of constant
propagation.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 117

ECE573, Fall 2005 233

Using the Results of Global Dataflow
Analysis:

Global Common Subexpression Elimination

 Do available expression analysis
 Do local CSE

– Initialize available expressions at the
beginning of the basic block with InSet

ECE573, Fall 2005 234

Global Register Allocation
 A possible approach:

– Do live variable analysis
– Do local register allocation. Inform successors of the

registers holding live variables. Successor initialize their
register association lists with this information.

 Issues:
– Coordinating register use across blocks
– Deciding where to best place spill code

 Cooper/Torczon’s Global Register Allocation
Algorithm

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 118

ECE573, Fall 2005 235

Global Register Allocation:
Live Ranges

 Live Range:
– Set of definition and uses, s.t. every definition that

may reach a use is in the same live range
– Some properties of live ranges

 A variable may have one or several LR
 LR exist for unnamed variables
 LR span across basic blocks
 LR may contain several definitions (LR is simple in BB

but complex across multiple BB)

ECE573, Fall 2005 236

Global Register Allocation:
Performance Factors

 Inserted spill code
 Inserted copy instructions
 Frequency of execution of basic blocks

– As a result, definitions, uses, and inserted
instructions may execute different numbers of
times

 Optimal solution is not feasible (NP hard)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 119

ECE573, Fall 2005 237

Global Register Allocation:
Approach

 Build live ranges
 Assign each live range to a virtual register

– Rename initially assigned virtual register names
 Annotate instructions (or basic blocks) with their

execution frequencies
– Determine frequencies by static analysis or profiling

 Make decisions:
– Which LR to reside in registers
– Which LR to share a register
– Which specific register for each LR

 Common method used: Graph coloring (use k colors
for the nodes of a graph, s.t. adjacent nodes have
different colors)

ECE573, Fall 2005 238

Global Register Allocation:
Building Live Ranges

 Build the programs SSA (Static Single
Assignment) form.
– SSA

 Rename variables s.t. each variable is defined exactly
once

 At control merge points, add a new construct that
expresses “variable’s value could come from either of the
definitions in the merging paths”  v9 = Ф(v5,v7)

 Make a pass through the SSA program,
creating sets of variables, s.t., all variables of
Ф-function statements are in the same set.
– Resulting sets are the Live Ranges

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 120

ECE573, Fall 2005 239

Global Register Allocation:
Spilling

 Where to spill:
– Memory hierarchy (cache lines may get evicted if

spilled location is not accessed frequently)
– Special local memory

 Spill cost:
– Basic cost of memory operation
– Negative, infinite spill costs for special patterns
– Multiplied by execution frequencies

ECE573, Fall 2005 240

Global Register Allocation:
Interference Graph and Coloring

 Interference Graph
– Nodes: Live Ranges
– Edges: overlaps in Live Ranges
Algorithm: C&T, Fig 13.7

 Coloring the Interference Graph
– Coloring is NP-complete  approximate solutions are necessary
– What to do if we run out of colors (i.e., there are no more registers)

 (Full) spilling; insert store after each definition; load before each use;
reserve some registers for that purpose

 Splitting the LR: break down the LR into smaller pieces; color the
smaller LRs; recombine where necessary

C&T calls this Top-Down Coloring. There is also Bottom-Up Coloring.
– Assign priorities to LR. Priority=importance of not spilling the LR.

Coloring proceeds in priority order.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 121

241

Other Compiler Transformations

Loop Fusion
Loop Distribution
Loop Interchange

Stripmining (loop blocking)
Tiling

ECE573, Fall 2005 242

Loop Fusion and Distribution

DO j = 1,n
 a(j) = b(j)
ENDDO

DO k=1,n
 c(k) = a(k)
ENDDO

DO j = 1,n
 a(j) = b(j)
 c(j) = a(j)
ENDDO

fusion

distribution

• necessary form for vectorization
• can provide synchronization
 necessary for “forward” dependences
• can create perfectly nested loops

• less parallel loop startup overhead
• can increase affinity (better locality of
 reference)

Both transformations change the statement execution order. Data
dependences need to be considered!

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 122

ECE573, Fall 2005 243

Loop Interchange

DO i = 1,n
 DO j =1,m
 a(i,j) = b(i,j)
 ENDDO
ENDDO

DO j =1,m
 DO i = 1,n
 a(i,j) = b(i,j)
 ENDDO
ENDDO

• loop interchanging alters the data reference order
 → significantly affects locality-of reference
 → data dependences determine the legality of the transformation

• loop interchanging may also impact the granularity of the parallel
 computation (inner loop may become parallel instead of outer)

ECE573, Fall 2005 244

Stripmining
(a.k.a. Loop Blocking)

DO j = 1,n
 a(j) = b(j)
ENDDO

DO j = 1,n,block
 DO k=0,block-1
 a(j+k) = b(j+k)
 ENDDO
ENDDO

1 n

Block (strip)

Many variants:
• adjustment if n is not a multiple of block
• number of blocks = number of processors
• cyclic or block-cyclic split

Stripmining can
• Split a loop into two for exploiting
 hierarchical parallel machines
• Create the right length vectors for
 vector operations
• Help increase cache locality

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 123

ECE573, Fall 2005 245

Tiling
DO i = 1,m
 DO j = 1,n
 a(i,j) = a(i,j)+a(i-1,j)
 ENDDO
ENDDO

DO i = 1,m
 DO j = 1,n,block
 DO k=0,block-1
 a(j+k) = …
 ENDDO
 ENDDO
ENDDO

DO j = 1,n,block
 DO i = 1,m
 DO k=0,block-1
 a(j+k) = …
 ENDDO
 ENDDO
ENDDO

i

j

i

j

ECE573, Fall 2005 246

Analysis and Transformation
Techniques for Parallelization

• 1 Data-dependence testing
• 2 Parallelism enabling transformations
• 3 Techniques for multiprocessors

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 124

ECE573, Fall 2005 247

1 Data Dependence Testing

DO i=1,n
 a(4*i) = . . .
 . . . = a(2*i+1)
ENDDO

the question to answer:
can 4*i ever be equal to 2*I+1 within i ∈[1,n] ?

In general: given
• two subscript functions f and g and
• loop bounds lower, upper.
Does
 f(i1) = g(i2) have a solution such that
 lower ≤ i1, i2 ≤ upper ?

Earlier, we have considered the simple case of a
1-dimensional array enclosed by a single loop:

ECE573, Fall 2005 248

Data Dependence Tests: Concepts
Terms for data dependences between statements of loop iterations.
 Distance (vector): indicates how many iterations apart are source and sink of

dependence.
 Direction (vector): is basically the sign of the distance. There are different notations:

(<,=,>) or (-1,0,+1) meaning dependence (from earlier to later, within the same, from
later to earlier) iteration.

 Loop-carried (or cross-iteration) dependence and non-loop-carried (or loop-
independent) dependence: indicates whether or not a dependence exists within one
iteration or across iterations.

– For detecting parallel loops, only cross-iteration dependences matter.
– equal dependences are relevant for optimizations such as statement reordering and loop

distribution.

 Data Dependence Graph: a graph showing statements as nodes and dependences
between them as edges. For loops, usually there is only one node per statement
instance.

 Iteration Space Graphs: the un-abstracted form of a dependence graph with one node
per statement instance. The statements of one loop iteration may be represented as a
single node.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 125

ECE573, Fall 2005 249

DDTests: doubly-nested loops

 Multiple loop indices:
DO i=1,n
 DO j=1,m
 X(a1*i + b1*j + c1) = . . .
 . . . = X(a2*i + b2*j + c2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

ECE573, Fall 2005 250

DDTests: even more complexity

 Multiple loop indices, multi-dimensional array:
DO i=1,n
 DO j=1,m
 X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = . . .
 . . . = X(a2*i2 + b2*j2 + c2, d2*i2 +e2*j2 + f2)
 ENDDO
ENDDO

dependence problem:
a1*i1 - a2*i2 + b1*j1 - b2*j2 = c2 - c1
d1*i1 - d2*i2 + e1*j1 - e2*j2 = f2 - f1
1 ≤ i1, i2 ≤ n
1 ≤ j1, j2 ≤ m

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 126

ECE573, Fall 2005 251

Data Dependence Tests:
The Simple Case

Note: variables i1, i2 are integers → diophantine equations.

Equation a * i1 - b* i2 = c has a solution if and only iff
 gcd(a,b) (evenly) divides c

 in our example this means: gcd(4,2)=2, which does not divide 1
and thus there is no dependence.

If there is a solution, we can test if it lies within the loop bounds. If not,
then there is no dependence.

ECE573, Fall 2005 252

Euklid Algorithm: find gcd(a,b)
 Repeat
 a ← a mod b
 swap a,b
 Until b=0

Performing the GCD Test
 The diophantine equation
 a1*i1 + a2*i2 +...+ an*in = c
has a solution iff gcd(a1,a2,...,an) evenly divides c

Examples:
 15*i +6*j -9*k = 12 has a solution gcd=3
 2*i + 7*j = 3 has a solution gcd=1
 9*i + 3*j + 6*k = 5 has no solution gcd=3

→The resulting a is the gcd

for more than two numbers:
gcd(a,b,c) = (gcd(a,gcd(b,c))

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 127

ECE573, Fall 2005 253

Other DD Tests

 The GCD test is simple but not accurate
 Other tests

– Banerjee test: accurate state-of-the-art test
– Omega test: “precise” test, most accurate

for linear subscripts
– Range test: handles non-linear and

symbolic subscripts
– many variants of these tests

ECE573, Fall 2005 254

The Banerjee(-Wolfe) Test

Basic idea:
if the total subscript range accessed by ref1

does not overlap with the range accessed
by ref2, then ref1 and ref2 are
independent.

DO j=1,100 ranges accesses:
 a(j) = … [1:100]
 … = a(j+200) [201:300]
ENDDO  independent

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 128

ECE573, Fall 2005 255

Banerjee(-Wolfe) Test continued

 Weakness of the test:

DO j=1,100 ranges accesses:
 a(j) = … [1:100]
 … = a(j+5) [6:105]
ENDDO  independent ?

We did not take into consideration that only loop-carried
dependences matter for parallelization.

Consider this dependence

ECE573, Fall 2005 256

Banerjee(-Wolfe) Test continued

 Solution idea:
for loop-carried dependences factor in the fact that j in ref2 is

greater than in ref1

DO j=1,100
 a(j) = …
 … = a(j+5)
ENDDO

This is commonly referred to as the
Banerjee test with direction vectors.

Ranges accessed by
 iteration j1 and any other
 iteration j2, where j1 < j2 :
 [j1]
 [j1+6:105]
 Independent for “>” direction

Clearly, this loop has a
dependence. It is an
anti-dependence from
a(j+5) to a(j)

Still considering the potential dependence
from a(j) to a(j+5)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 129

ECE573, Fall 2005 257

Considering direction vectors can increase the complexity of the DD test
substantially. For long vectors (corresponding to deeply-nested
loops), there are many possible combinations of directions.

A possible algorithm:
1. try (*,*…*) , i.e., do not consider directions
2. (if not independent) try (<,*,*…*), (=,*,*…*)
3. (if still not independent) try (<,<,*…*),(<,>,*…*) ,(<,=,*…*)

 (=,<,*…*),(=,>,*…*) ,(=,=,*…*)
. . .
(This forms a tree)

DD Testing with Direction Vectors

*, * , . . . , *
= = =
< < <
 > >

(d1,d2,…,dn)

ECE573, Fall 2005 258

Non-linear and Symbolic DD Testing

Weakness of most data dependence tests:
subscripts and loop bounds must be affine,
i.e., linear with integer-constant coefficients

Approach of the Range Test:
capture subscript ranges symbolically
compare ranges: find their upper and lower bounds

by determining monotonicity. Monotonically
increasing/decreasing ranges can be compared by
comparing their upper and lower bounds.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 130

ECE573, Fall 2005 259

The Range Test
Basic idea :
1. find the range of array accesses made in a given loop iteration
2. If the upper(lower) bound of this range is less(greater) than the

lower(upper) bound of the range accesses in the next iteration,
then there is no cross-iteration dependence.

 Example: testing independence of the outer loop:

DO i=1,n
 DO j=1,m
 A(i*m+j) = 0
 ENDDO
ENDDO

range of A accessed in iteration ix: [ix*m+1:(ix+1)*m]

range of A accessed in iteration ix+1: [(ix+1)*m+1:(ix+2)*m]

ubx

lbx+1

ubx < lbx+1 ⇒ no cross-iteration dependence

ECE573, Fall 2005 260

Range Test continued

DO i1=L1,U1
 ...
 DO in=Ln,Un
 A(f(i0,...in)) = ...
 ... = A(g(i0,...in))
 ENDDO
 ...
ENDDO

Assume f,g are monotonically increasing w.r.t. all ix:
 find upper bound of access range at loop k:
 successively substitute ix with Ux, x={n,n-1,...,k}
 lowerbound is computed analogously

If f,g are monotonically decreasing w.r.t. some iy,
then substitute Ly when computing the upper
bound.

Determining monotonicity: consider d = f(...,ik,...) - f(...,ik-1,...)
 If d>0 (for all values of ik) then f is monotonically increasing w.r.t. k
 If d<0 (for all values of ik) then f is monotonically decreasing w.r.t. k

What about symbolic coefficients?
• in many cases they cancel out
• if not, find their range (i.e., all possible values they can assume at this point
in the program), and replace them by the upper or lower bound of the range.

we need
 range
analysis

we need powerful expression
manipulation and comparison

utilities

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 131

ECE573, Fall 2005 261

Range Test :
handling non-contiguous ranges

DO i1=1,u1
 DO i2=1,u2
 A(n*i1+m*i2)) = …
 ENDDO
ENDDO

The basic Range Test finds
independence
of the outer loop
 if n >= u2 and m=1
But not
 if n=1 and m>=u1

Issues:
• legality of loop interchanging,
• change of parallelism as a result of loop interchanging

Idea:
 - temporarily (during program analysis) interchange the loops,
 - test independence,
 - interchange back

ECE573, Fall 2005 262

Data-Dependence Test, References
 Banerjee/Wolfe test

– M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel
Processing", Int. J. of Parallel Programming, Vol.16, No.2, pp.137-178,
1987

 Range test
– William Blume and Rudolf Eigenmann. Non-Linear and Symbolic Data

Dependence Testing, IEEE Transactions of Parallel and Distributed
Systems, Volume 9, Number 12, pages 1180-1194, December 1998.

 Omega test
– William Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence. Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing,1991

 I Test
– Xiangyun Kong, David Klappholz, and Kleanthis Psarris, "The I Test: A New

Test for Subscript Data Dependence," Proceedings of the 1990
International Conference on Parallel Processing, Vol. II, pages 204-211,
August 1990.

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 132

ECE573, Fall 2005 263

2 Parallelism Enabling
Techniques

ECE573, Fall 2005 264

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

scalar privatization array privatization

loop-carried
anti dependence

Privatization

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 133

ECE573, Fall 2005 265

Array Privatization
Capabilities needed for Array

Privatization
 array Def-Use Analysis
 combining and intersecting

subscript ranges
 representing subscript ranges
 representing conditionals

under which sections are
defined/used

 if ranges too complex to
represent: overestimate Uses,
underestimate Defs

k = 5
DO j=1,n
 t(1:10) = A(j,1:10)+B(j)
 C(j,iv) = t(k)
 t(11:m) = A(j,11:m)+B(j)
 C(j,1:m) = t(1:m)
ENDDO

DO j=1,n
 IF (cond(j))
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
 ENDIF
 D(j,1) = t(1)
ENDDO

ECE573, Fall 2005 266

Array Privatization continued

Array privatization algorithm:
 For each loop nest:

– iterate from innermost to outermost loop:
 for each statement in the loop

– find definitions; add them to the existing definitions in
this loop.

– find array uses; if they are covered by a definition,
mark this array section as privatizable for this loop,
otherwise mark it as upward-exposed in this loop;

 aggregate defined and upward-exposed, used ranges
(expand from range per-iteration to entire iteration
space); record them as Defs and Uses for this loop

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 134

ECE573, Fall 2005 267

Array Privatization,
References

 Peng Tu and D. Padua. Automatic Array Privatization.
Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science 768, U. Banerjee, D. Gelernter, A.
Nicolau, and D. Padua (Eds.), Springer-Verlag, 1994.

 Zhiyuan Li, Array Privatization for Parallel Execution of Loops,
Proceedings of the 1992 ACM International Conference on
Supercomputing

ECE573, Fall 2005 268

ind = k
DO i=1,n
 ind = ind + 2
 A(ind) = B(i)
ENDDO

loop-carried
flow
dependence

Parallel DO i=1,n
 A(k+2*i) = B(i)
ENDDO

Induction Variable Substitution

This is the simple case of an induction variable

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 135

ECE573, Fall 2005 269

Generalized Induction Variables
ind=k
DO j=1,n
 ind = ind + j
 A(ind) = B(j)
ENDDO

Parallel DO j=1,n
 A(k+(j**2+j)/2) = B(i)
ENDDO

DO i=1,n
 ind1 = ind1 + 1
 ind2 = ind2 + ind1
 A(ind2) = B(i)
ENDDO

DO i=1,n
 DO j=1,i
 ind = ind + 1
 A(ind) = B(i)
 ENDDO
ENDDO

ECE573, Fall 2005 270

Recognizing GIVs
 Pattern Matching:

– find induction statements in a loop nest of the form iv=iv+expr
or iv=iv*expr, where iv is an scalar integer.

– expr must be loop-invariant or another induction variable (there
must not be cyclic relationships among IVs)

– iv must not be assigned in a non-induction statement
 Abstract interpretation: find symbolic increments of iv per loop

iteration
 SSA-based recognition

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 136

ECE573, Fall 2005 271

Computing Closed Form, Substituting
additive GIVs

Loop structure L0: stmt type

For j: 1..ub
…
S1: iv=iv+exp I
…
S2: loop using iv L
…
S3: stmt using iv U
…
Rof

Step1: find the increment rel. to start of loop L
FindIncrement(L)
 inc=0
 foreach si of type I,L
 if type(si)=L inc+= FindIncrement(si)
 else inc += exp
 inc_after[si]=inc
 inc_into_loop[L]= ∑1

j-1(inc) ; inc may depend
 return ∑1

ub(inc) ; on j

Step 2: substitute IV
Replace (L,initialval)
 foreach si of type I,L,U
 if type(si)=L Replace(si,val)
 if type(si)=L,I val=initialval
 +inc_into_loop[L]
 +inc_after[si]
 if type(si)=U Substitute(si.expr,iv,val)

Main:
inc = FindIncrement(L0)
Replace(L0,iv)
InsertStatement(“iv = inc”)Omit this statement

If iv is not live-out

For coupled GIVs: begin with independent iv.

ECE573, Fall 2005 272

Induction Variables, References
 B. Pottenger and R. Eigenmann. Idiom Recognition in the Polaris

Parallelizing Compiler. ACM Int. Conf. on Supercomputing (ICS'95),
June 1995. (Extended version: Parallelization in the presence of
generalized induction and reduction variables.
www.ece.ecn.purdue.edu/~eigenman/reports/1396.pdf)

 Mohammad R. Haghighat , Constantine D. Polychronopoulos, Symbolic
analysis for parallelizing compilers, ACM Transactions on Programming
Languages and Systems (TOPLAS), v.18 n.4, p.477-518, July 1996

 Michael P. Gerlek , Eric Stoltz , Michael Wolfe, Beyond induction
variables: detecting and classifying sequences using a demand-driven
SSA form, ACM Transactions on Programming Languages and
Systems (TOPLAS), v.17 n.1, p.85-122, Jan. 1995

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 137

ECE573, Fall 2005 273

!$OMP PARALLEL PRIVATE(s)
s=0
!$OMP DO
DO i=1,n
 s=s+A(i)
ENDDO
!$OMP ATOMIC
sum = sum+s
!$OMP END PARALLELDO i=1,n

 sum = sum + A(i)
ENDDO

loop-carried
flow
dependence

Reduction
Parallelization

Note, OpenMP has a reduction clause,
only reduction recognition is needed:
!$OMP PARALLEL DO
!$OMP+REDUCTION(+:sum)
DO i=1,n
 sum = sum + A(i)
ENDDO

DO i=1,num_proc
 s(i)=0
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(my_proc)=s(my_proc)+A(i)
ENDDO
DO i=1,num_proc
 sum=sum+s(i)
ENDDO

Scalar Reductions

ECE573, Fall 2005 274

Reduction Parallelization continued

Reduction recognition and parallelization
passes:

induction variable recognition
reduction recognition
privatization
data dependence test
reduction parallelization

compiler passes

recognizes and
annotates reduction
variables

for parallel loops with
reduction variables,
performance the
reduction
transformation

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 138

ECE573, Fall 2005 275

DIMENSION sum(m),s(m)
!$OMP PARALLEL PRIVATE(s)
s(1:m)=0
!$OMP DO
DO i=1,n
 s(expr)=s(expr)+A(i)
ENDDO
!$OMP ATOMIC
sum(1:m) = sum(1:m)+s(1:m)
!$OMP END PARALLEL

DIMENSION sum(m)
DO i=1,n
 sum(expr) = sum(expr) + A(i)
ENDDO

Reduction Parallelization
DIMENSION sum(m),s(m,#proc)
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 s(i,j)=0
ENDDO
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(expr,my_proc)=s(expr,my_proc)+A(i)
ENDDO
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 sum(i)=sum(i)+s(i,j)
ENDDO
ENDDO

Array Reductions (a.k.a. irregular or
histogram reductions)

ECE573, Fall 2005 276

Recognizing Reductions

 Pattern Matching:
– find reduction statements in a loop of the form

X=X ⊗ expr ,
where X is either scalar or an array expression (a[sub],

where sub must be the same on the LHS and the RHS),
⊗ is a reduction operation, such as +, *, min, max

– X must not be used in any non-reduction statement
in this loop (however, there may be multiple reduction
statements for X)

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 139

ECE573, Fall 2005 277

Performance Considerations
for Reduction Parallelization

 Parallelized reductions execute substantially more code than their
serial versions ⇒ overhead if the reduction (n) is small.

 In many cases (for large reductions) initialization and sum-up are
insignificant.

 False sharing can occur, especially in expanded reductions, if multiple
processors use adjacent array elements of the temporary reduction
array (s).

 Expanded reductions exhibit more parallelism in the sum-up operation.
 Potential overhead in initialization, sum-up, and memory used for large,

sparse array reductions ⇒ compression schemes can become useful.

ECE573, Fall 2005 278

DO j=1,n
 a(j) = c0+c1*a(j)+c2*a(j-1)+c3*a(j-2)
ENDDO

call rec_solver(a,n,c0,c1,c2,c3)

loop-carried
flow
dependence

Recurrence Substitution

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 140

ECE573, Fall 2005 279

Basic idea of the recurrence solver:

DO j=1,40
 a(j) = a(j) + a(j-1)
ENDDO

DO j=1,10
 a(j) = a(j) + a(j-1)
ENDDO

DO j=11,20
 a(j) = a(j) + a(j-1)
ENDDO

DO j=21,30
 a(j) = a(j) + a(j-1)
ENDDO

DO j=31,40
 a(j) = a(j) + a(j-1)
ENDDO

Error: 0 ∆a(10) ∆a(10)+∆a(20)
∆a(10)+∆a(20)+∆a(30)

Recurrence Substitution continued

Issues:
• Solver makes several parallel sweeps through the iteration space (n). Overhead can
only be amortized if n is large.

• Many variants of the source code are possible. Transformations may be necessary to
fit the library call format  additional overhead.

 DO 40 II=3,IL
 I = I -1
 DO 40 J=2,JL
 DW(I,J,N) = DW(I,J,N) -R*(DW(I,J,N) -DW(I+1,J,N))
 40 CONTINUE

Example from FLO52

ECE573, Fall 2005 280

3 Techniques for
Multiprocessors

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 141

ECE573, Fall 2005 281

PARALLEL DO i=1,n
 A(i) = B(i)
ENDDO
PARALLEL DO i=1,n
 C(i) = A(i)+D(i)
ENDDO

PARALLEL DO i=1,n
 A(i) = B(i)
 C(i) = A(i)+D(i)
ENDDO

loop fusion

Loop Fusion

Loop fusion is the reverse of loop distribution.
It reduces the loop fork/join overhead.

ECE573, Fall 2005 282

PARALLEL DO ij=1,n*m
 i = 1 + (ij-1) DIV m
 j = 1 + (ij-1) MOD m
 A(i,j) = B(i,j)
ENDDO

PARALLEL DO i=1,n
 DO j=1,m
 A(i,j) = B(i,j)
 ENDDO
ENDDO

loop
coalescing

Loop Coalescing

Loop coalescing
• can increase the number of iterations of a parallel loop  load balancing
• adds additional computation  overhead

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 142

ECE573, Fall 2005 283

DO i=1,n
 PARALLEL DO j=1,m
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

loop
interchange

PARALLEL DO j=1,m
 DO i=1,n
 A(i,j) = A(i-1,j)
 ENDDO
ENDDO

Loop Interchange

Loop interchange affects:
• granularity of parallel computation (compare the number of parallel loops started)
• locality of reference (compare the cache-line reuse)
these two effects may impact the performance in the same or in opposite directions.

ECE573, Fall 2005 284

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

loop
blocking

DO PARALLEL i1=1,n,block
 DO j=1,m
 DO i=i1,min(i1+block-1,n)
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
 ENDDO
ENDDO

Loop Blocking

This is basically the same transformation as stripming.
However, loop interchanging is involved as well.

j

i

j

i

p1

p2

p3

p4

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 143

ECE573, Fall 2005 285

Loop Blocking
continued

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

!$OMP PARALLEL
DO j=1,m
!$OMP DO
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
!$OMP ENDDO NOWAIT
ENDDO
!$OMP END PARALLEL

j

i

j

i

p1

p2

p3

p4

ECE573, Fall 2005 286

Choosing the Block Size

The block size must be small enough so that all data references between
the use and the reuse fit in cache.

If the cache is shared, all processors use it simultaneously. Hence the
effective cache size appears smaller:

 block < cachesize / (r1+r2+2)*d*num_proc

DO j=1,m
 DO k=1,block
 … (r1 data references)
 … = A(k,j) + A(k,j-d)
 … (r2 data references)
 ENDDO
ENDDO

Number of references made between the
access A(k,j) and the access A(k,j-d) when
referencing the same memory location:
(r1+r2+3)*d*block
 block < cachesize / (r1+r2+2)*d

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 144

ECE573, Fall 2005 287

DO i=1,n
 A(i) = B(i)
 DO j=1,m
 D(i,j)=E(i,j)
 ENDDO
ENDDO

DO i=1,n
 A(i) = B(i)
ENDDO

DO j=1,m
 DO i=1,n
 D(i,j)=E(i,j)
 ENDDO
ENDDO

loop
distribution
enables
interchange

Loop Distribution Enables
Other Techniques

In a program with multiply-nested loops, there can be a large number of
possible program variants obtained through distribution and interchanging

ECE573, Fall 2005 288

DO i=1,n
 A(i) = B(i)
ENDDO

PARALLEL DO (inter-cluster) i1=1,n,strip
 PARALLEL DO (intra-cluster) i=i1,min(i1+strip-1,n)
 A(i) = B(i)
 ENDDO
ENDDO

strip mining
for multi-level
parallelism

Multi-level Parallelism from
Single Loops

M
P P P P

M
P P P P

M
P P P P

M
P P P P

M cluster

Compilers & Translators

ECE573, Fall 2005, R. Eigenmann 145

ECE573, Fall 2005 289

References

 High Performance Compilers for Parallel
Computing, Michale Wolfe, Addison-Wesley, ISBN
0-8053-2730-4.

 Optimizing Compilers for Modern Architectures:
A Dependence-based Approach, Ken Kennedy and
John R. Allen, Morgan Kaufmann Publishers, ISBN
1558602860

