
ECE563 Programming Parallel Machines

Tentative Syllabus

Spring 2013 Mo/We/Fr 2:30-3:20 PM, EE 224

Instructor Prof. R. Eigenmann
Tel 49-41741
Email eigenman@purdue.edu
Office EE325
Office Hours Tu 8:30-10:00 AM and by appointment
Secretary: Wanda Dallinger, EE326B
Course Web Page: http://engineering.purdue.edu/˜eigenman/ECE563/

Prerequisites: EE565 (Computer Architecture). Substantial programming experience.

Text: Research papers and course handouts.

Description:

This course presents methods and techniques for programming parallel computers. Various parallel
algorithms are presented to demonstrate different techniques for identifying parallel tasks and map-
ping them onto parallel machines. Realistic science/engineering applications and their characteristics
will be discussed. Parallel architectures to be considered are multicores, accelerators (such as GPG-
PUs), multiprocessors and distributed-memory multiprocessor systems. Programming paradigms for
these machines will be compared, including directive-based (OpenMP), message passing (MPI) and
thread-based (Posix threads) methods. Methodologies for analyzing and improving the performance
of parallel programs will be discussed. There will be a class project in which students parallelize and
tune the performance of a sizeable computational application or develop/improve tools that help in
this process.

Outcomes:

A student who successfully fulfills the course requirements will have demonstrated:

• an understanding of the basic features of parallel computer architectures and their relationship
to parallel program design.

• an ability to analyze a program for parallelism and express this parallelism for both shared-
memory and distributed-memory machines.

• an understanding of parallel models and programming contructs for OpenMP, MPI, and Posix
threads.

1



• an understanding of performance factors of parallel program executions and their relationship
to application characteristics and parallel programming constructs.

• an ability to use parallelizing compilers to parallelize and tune the performance of application
programs.

Course Grading:

Tests 50%. (20% midterm, 30% final exam)
Participation in class 15%
Projects 35%

Notice the high percentage given to class participation. Good class participation means volunteering
answers to questions and contributions to discussions without being called on.
For project grades see the projects section below.

Regrading policy: any information that you feel will affect your grade, including grade disputes and
information about emergencies that prevent you from attending class or submitting reports on time
must be sent by email to the instructor. In general, the instructor will not respond to these notes
or change your intermediate grades. However, the information will be factored into your final class
grade. You may discuss your class standing and tentative grade with the instructor before the end
of the course. Once the grades have been finalized, no remedial actions can be granted.

Course schedule:

Week
Monday Jan 7 Sem starts M W F 1

14 M W F 2
21 . W F 3 Mon, Jan 21: M.L.King Day
28 M W F 4

Feb 4 M W F 5
11 M W F 6
18 M W F 7
25 M W F 8

Mar 4 M W F 9 Wed, Mar 6 Midterm exam
11 . . . Spring Break
18 M W F 10
25 M W F 11

Apr 1 M W F 12
8 M W F 13
15 M W F 14
22 M W F 15

Apr 29 final exams week Final exam: TBD

2



Tentative Course Outline:

Topic #weeks
1. Introduction and Motivation 1
2. Program parallelization techniques 1
3. Tuning parallel programs 1
4. Explicit vs. automatic parallelization 2
5. OpenMP 1
7. MPI 1
8. Pthreads 1
9. Other models 1

10. Programming methodologies and tools 2
11. Application studies 1
12. Project Discussions 2

Class Projects: Groups of two students will conduct a class project, proposed by the students.
There are two options for proposals:

1. An application of the students’ choice will be converted to a tuned parallel program and exe-
cuted on a parallel machine. The project report will document the original and tuned perfor-
mance (broken down for each interesting program section) as well as intermediate performance
results of each program tuning step.

2. The students can develop a new or improve an existing programming tool. The goal is to
create a tool that will be of use to those students who conduct performance tuning projects.
The project report must contain evidence that the tool has improved the performance tuning
process. Appropriate performance metrics must be defined.

Important findings of the projects will be presented in a 10-minute talk at the end of the semester.

A project proposal draft is to be prepared by the end of the second week (Friday 11:59 PM); the
final proposal is due at the end of the third week of class. Application tuning project proposals will
describe, in two pages, the application to be chosen, (including a brief application description and
its relevance, the programming language, and the number of lines), the machine(s) to be used in the
performance study, the parallel programming model(s) to be used, opportunities for parallelization
and tuning (i.e., the programming and performance improvement steps you expect to apply), and
the expected performance results from the proposed work. Tool project proposals will include a brief
description of the tool that will be extended (if any), the tool features that will be developed, ratio-
nales for these features, and a tool evaluation section (metrics for tool evaluation and benchmarks).
All proposals should include and a timeline, indicating when you expect to have completed what
part of the project (3-4 milestones during the semester).

An intermediate report is due at the end of week 10 and the final report is due on the last day
of class. The due dates are also posted on the course web page. The final (intermediate) project
report is approximately 10 (5) pages, excluding code, 11pt font, double spaced. The front page of
each report must include the project title, student names and email addresses, the course number
(ECE663), and whether it is the draft proposal, final proposal, intermediate, or final project report.

Send the project proposals and reports in PDF format to eigenman@purdue.edu before the due date.

3



Do not request due date extensions. If there are circumstances beyond your control that delay a
submission, send a separate note of explanation (with evidence, if applicable) to the instructor, right
after you have made the late submission. Such explanations will be considered as described under
regrading policy. Late submissions of the final project reports cannot be accepted, however.

For a good project grade, it is important that the project reports provide evidence that the students
understand their performance results. The reports should also express the effort that went into the
project (indicate the average hours/week spent on the project, for each student, and the distribution
of this time over the 15 weeks)

4


