ECE 563 Project:
Parallelizing Image
Mosaicing

ZZZZZ

Overview

Introduction into Image Mosaicing

Discussion of the Algorithm

Methodology

Results

Future Work

Detection of Interest Points
Locates points of interest (defined shapes, positions, etc.) that exists in adjacent photos .

RANSAC (Random Sample Consensus)

Large numbers of iterations to maximize numbers of “inliners” to compute
homography

Image Mosaicing

Stitches together images with respect to the center image using the the homography

Algorithm

* 8 major tasks
Read Images — 0.55%
Detect Points of Interest — 6.22%
Compute Descriptors — 8.81%
Match Interest Points — 3.84%

Identify True Matches (RANSAC) and Compute Homography—
63.87%

Create Matching Image Pairs — 0.25%
Manipulate and Apply Homography —12.62%
Generate Final Image — 3.80%

Methodology

* Focused on the computation of homography and other
sections that took more than 5% of runtime

* Running on system with 64 Intel Xeon processors with 8 cores
per processor.

Parallelization Example

#pragma omp parallel for private(srcP, destP, y_x, y v, distance)

for (i = 0; i < sampleSize; i++) {
srcP = srcPoints->at(i);
destP = destPoints->at(i);
y_x = destP_mat.at<double>(0, i) / destP_mat.at<double>(2, i);
y_y = destP_mat.at<double>(1, i) / destP_mat.at<double>(2, i);
distance = sqrt(pow((y_y - destP.y), 2) + pow((y_x - destP.x), 2));
#pragma omp critical (pickinliners)

{
if (distance < decisionThreshold) {
src.push_back(srcP);
dest.push_back(destP);
}
}

Results

Performance Chart for ImageMosaicing

™ Serial

9 images

27 images

5l B H B I

1 2 4 8
Number of Cores

Results (Cont.)

27 images
16
14
12
o 10
=2
B 3
Q
“ 6
4
2
0
1 5 9 13 17 21 25 29

of Cores

Future Work

* Examine OpenCV libraries to extract more parallelism

* Run larger data sets to see influence on performance.

