
Anup Mohan 
Hridya Valsaraju 

Ronak Vinod Panchal 

4/22/2013 1 



 Widely used in many applications like, 
 Quantum mechanics 
 Graph theory  
 Image processing etc… 
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 We use the DotNetMatrix library for Eigen 
Value and Eigen vector calculation 

 Accepts only Real Matrices 
 Computes EigenValues and EigenVectors for 

Symmetic and Non-Symmetric Matrices 
 Capable of computing Imaginary EigenValues 

and EigenVectors 
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 Calculation involves two major steps 
 Tridiagonalization 

▪ Uses Householder transformation to convert input 
matrix to tridiagonal form 

▪ Contributes to 98% of execution time 

 QL Method for Diagonalization 
▪ Uses QL algorithm to convert the tridiagonal matrix to 

diagonal form 

▪ Diagonal elements of  the Diagonal matrix are the 
EigenValues 

▪ Contributes to 1% of execution time 
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 Calculation involves two major steps 

 Hessenberg Matrix Generation 

▪ Converts the input matrix to Hessenberg form 

▪ Contributes to 22% of execution time 

 Hessenberg to Real-Schur Decomposition 

▪ Converts the Hessenberg matrix to Real-schur form 

▪ Diagonal elements of Real-Schur matrix are the 
EigenValues 

▪ Contributes to 75% of execution time 
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 Symmetric  
 - tred2() : 98% 
           two main loops: loop2- 31%  
     loop3- 68% 
 
 Non Symmetric 
 -hqr2() : 75% 
  two main loops: loop2- 87.7%  
     loop5- 10.9% 
 -orthes() : 22% 
  two main loops: loop1- 60.1%  
     loop3- 35.0% 
Test Setup 
 Input sizes of 800x800, 500x500, 100x100 
 Intel® Core™ i7-2670QM, 4 Cores, CPU @2.20GHz 
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 Contains two main loops 
 
Transformations performed: 
 Loop interchange 
 Privatization 
 Scheduling 
 Reduction 
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 Contains two main loops 
 

Transformations performed: 
 Reduction 
 Privatization 
 
Factors preventing parallelization 
 True Dependence 
 Break Statements inside conditionals 
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 Contains two main loops 
 

Transformations performed: 
 Reduction 
 Privatization 
 Scheduling 
 
Factors preventing parallelization 
 Multiple True Dependencies 
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 Used the Cetus 1.4.0 binary release 
 Helpful in finding a few reductions which 

resulted in improved performance 
 A few optimizations suggested by Cetus 

worsened the performance due to over 
optimization of inner loops 
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 Take data on 8,16 core machines 
 Compare the results with Intel MKL 

benchmarks 
 Modifying the algorithm to reduce the 

dependencies 
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