
Anup Mohan
Hridya Valsaraju

Ronak Vinod Panchal

4/22/2013 1

 Widely used in many applications like,
 Quantum mechanics
 Graph theory
 Image processing etc…

4/22/2013 2

 We use the DotNetMatrix library for Eigen
Value and Eigen vector calculation

 Accepts only Real Matrices
 Computes EigenValues and EigenVectors for

Symmetic and Non-Symmetric Matrices
 Capable of computing Imaginary EigenValues

and EigenVectors

4/22/2013 3

 Calculation involves two major steps
 Tridiagonalization

▪ Uses Householder transformation to convert input
matrix to tridiagonal form

▪ Contributes to 98% of execution time

 QL Method for Diagonalization
▪ Uses QL algorithm to convert the tridiagonal matrix to

diagonal form

▪ Diagonal elements of the Diagonal matrix are the
EigenValues

▪ Contributes to 1% of execution time

4/22/2013 4

 Calculation involves two major steps

 Hessenberg Matrix Generation

▪ Converts the input matrix to Hessenberg form

▪ Contributes to 22% of execution time

 Hessenberg to Real-Schur Decomposition

▪ Converts the Hessenberg matrix to Real-schur form

▪ Diagonal elements of Real-Schur matrix are the
EigenValues

▪ Contributes to 75% of execution time

4/22/2013 5

 Symmetric
 - tred2() : 98%
 two main loops: loop2- 31%
 loop3- 68%

 Non Symmetric
 -hqr2() : 75%
 two main loops: loop2- 87.7%
 loop5- 10.9%
 -orthes() : 22%
 two main loops: loop1- 60.1%
 loop3- 35.0%
Test Setup
 Input sizes of 800x800, 500x500, 100x100
 Intel® Core™ i7-2670QM, 4 Cores, CPU @2.20GHz

4/22/2013 6

 Contains two main loops

Transformations performed:
 Loop interchange
 Privatization
 Scheduling
 Reduction

4/22/2013 7

0

0.5

1

1.5

2

2.5

3

3.5

4

S 1 2 4

T1

T2

T3

T4

T5

T6

S
p
e
e
d

u
p

0

0.5

1

1.5

2

2.5

3

3.5

4

S 1 2 4

T1

T2

T3

T4

T5

T6

800 x 800

500 x 500

0

0.5

1

1.5

2

2.5

S 1 2 4

T1

T2

T3

T4

T5

T6

S
p
e
e
d

u
p

100 x 100

4/22/2013 8

Cores

 Contains two main loops

Transformations performed:
 Reduction
 Privatization

Factors preventing parallelization
 True Dependence
 Break Statements inside conditionals

4/22/2013 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S 1 2 4

T1

T2

S
p
e
e
d

u
p

 Cores

800 x 800

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S 1 2 4

T1

T2

500 x 500

0

0.2

0.4

0.6

0.8

1

1.2

S 1 2 4

T1

T2

100 x 100

4/22/2013 10

 Contains two main loops

Transformations performed:
 Reduction
 Privatization
 Scheduling

Factors preventing parallelization
 Multiple True Dependencies

 4/22/2013 11

4/22/2013 12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

serial 1 2 4

T1

T2

T3

T4

T5

S
p
e
e
d

u
p

Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

serial 1 2 4

T1

T2

T3

T4

T5

S
p
e
e
d

u
p

Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

T1

T2

T3

T4

T5

S
p
e
e
d

u
p

Cores

800 x 800

500 x 500 100 x 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4

800x800

500x500

100x100

S
p
e
e
d

u
p

Cores

Non-Symmetric

4/22/2013 13

4/22/2013 14

0

0.5

1

1.5

2

2.5

1 2 4

800x800

500x500

100x100

Cores

Symmetric

 Used the Cetus 1.4.0 binary release
 Helpful in finding a few reductions which

resulted in improved performance
 A few optimizations suggested by Cetus

worsened the performance due to over
optimization of inner loops

4/22/2013 15

 Take data on 8,16 core machines
 Compare the results with Intel MKL

benchmarks
 Modifying the algorithm to reduce the

dependencies

4/22/2013 16

