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ABSTRACT

MapReduce is a programming model from Google for
cluster-based computing in domains such as search
engines, machine learning, and data mining. MapReduce
provides automatic data management and fault tolerance to
improve programmability of clusters. MapReduce’s execu-
tion model includes an all-map-to-all-reduce communica-
tion, called the shuffle, across the network bisection. Some
MapReductions move large amounts of data (e.g., as much
as the input data), stressing the bisection bandwidth and
introducing significant runtime overhead. Optimizing such
shuffle-heavy MapReductions is important because (1)
they include key applications (e.g., inverted indexing for
search engines and data clustering for machine learning)
and (2) they run longer than shuffle-light MapReductions
(e.g., 5x longer). In MapReduce, the asynchronous nature
of the shuffle results in some overlap between the shuffle
and map. Unfortunately, this overlap is insufficient in shuf-
fle-heavy MapReductions. We propose MapReduce with
communication overlap (MaRCO) to achieve nearly full
overlap via the novel idea of including the reduce in the
overlap. While MapReduce lazily performs reduce compu-
tation only after receiving all the map data, MaRCO
employs eager reduce to process partial data from some
map tasks while overlapping with other map tasks’ com-
munication. MaRCO’s approach of hiding the latency of
the inevitably high shuffle volume of shuffle-heavy
MapReductions is fundamental for achieving performance.
We implement MaRCO in Hadoop’s MapReduce and
show that on a 128-node Amazon EC2 cluster, MaRCO
achieves 23% average speedup over Hadoop for shuffle-
heavy MapReductions.
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1  INTRODUCTION

The explosion of information on the Internet and the
World-wide Web has led to commercially-important prob-
lems in the Internet- and Web-computing domains such as
search engines, machine learning, and data mining. Algo-
rithms for solving these problems process massive amounts
of data (e.g., terabytes) and exhibit abundant and simple
parallelism. As such, the algorithms are suitable for inex-
pensive large-scale clusters of commodity computers.

While the cluster-based approach achieves cost-effec-
tive performance, data management (distribution and
movement), and fault tolerance performed manually by the
programmer degrade programmability. Faults (software
bugs or hardware failures) are not uncommon because
most of the problems run for a long time even on a large
cluster (e.g., a few hours on a 1000-node cluster). 

MapReduce [11], the celebrated new programming

model from Google inspired by functional languages’ map
and reduce, addresses these two programmability issues by
providing automatic data management among the cluster
nodes and transparent fault detection and recovery.
MapReduce programs have a fixed structure where the
input data is mapped into a set of <key, value> tuples and
then the values for each key are reduced to a final value.
Because of parallelism within map and within reduce com-
putations, multiple map and reduce tasks are run in paral-
lel. However, the programmer merely specifies the map
and reduce functions, whereas task management, data man-
agement, and fault tolerance are handled automatically.
Despite the fixed structure of its programs, MapReduce
captures many important application domains in Internet
and Web computing. Despite recent debate on the relative
benefits of MapReduce over databases [19], MapReduce
remains attractive for enterprises that handle large amounts
of fast-changing data including Google [11], Yahoo [13],
Microsoft [16],[24] and Facebook [15], as discussed in
Section 4. 

While MapReduce’s programming model has two
phases —  map and reduce, MapReduce’s execution model
has four phases. In the first phase, the map computation
operates over input data and emits the <key,value> tuples.
This phase is completely parallel and can be distributed
easily over a cluster. The second phase performs an all-
map-to-all-reduce personalized communication [17] in
which all the tuples for a particular key are sent to a single
reduce task. Because there are usually many more unique
keys than reduce tasks, each reduce task may process more
than one key. The third phase sorts the tuples on the key
field essentially grouping all the tuples for the same key.
This grouping does not occur naturally because each
reduce task receives tuples from all the map tasks and the
tuples for the different keys meant for a reduce task may be
jumbled. Finally, the fourth phase of reduce computation
processes all the tuples for the same key and produces the
final output for the key. 

Because of the abundant parallelism within map and
within reduce, and because of reduce’s dependence on
map, map tasks occupy the entire cluster followed by
reduce tasks instead of space-sharing the cluster with
reduce tasks. Consequently, the all-map-to-all-reduce per-
sonalized communication, called shuffle [11], amounts to
all-nodes-to-all-nodes communication which crosses the
network bisection. The shuffle moves data from the map
nodes’ disks rather than their main memories, through the
cluster network, to the disks of the reduce nodes, incurring
both disk and network latencies. While shuffle-light
MapReductions move only small amounts of data (e.g., a
small fraction of the input data), shuffle-heavy MapReduc-
tions move large amounts of data (e.g., as much as the
input data), stressing the disk and network bisection band-
widths. We observe that a MapReduction’s functionality
fundamentally impacts its shuffle volume. Shuffle-light
MapReductions correspond to data summarization tasks
(e.g., counting occurrences) which naturally produce much



less output than input, whereas shuffle-heavy MapReduc-
tions correspond to data re-organization (e.g., inverted
indexing, sorting) which tend to output as much as or more
than the input. Shuffle-heavy MapReductions incur consid-
erable performance overhead (e.g., 30-40%) due to the high
data volume transferred using affordable disk and network
bisection bandwidths of commodity parts. Specifically, net-
work bisection for large clusters (e.g., 55 Mbps per node for
a 1800-node cluster [22]) is scarcer than local disk band-
width (e.g., 800 Mbps). Optimizing shuffle-heavy MapRe-
ductions is important because (1) they include key
applications such as inverted-index in search engines and k-
means in machine learning and (2) they take long to com-
plete due not only to long shuffle times but also to long
reduce times for processing the large shuffle data (e.g., sort
runs five times longer than grep [11]). In contrast, shuffle-
light MapReductions are short-running with much less need
and opportunity for optimization. 

Many straightforward options for this problem are not
effective. (1) Reducing the overhead via brute-force
approaches to improve bisection bandwidths are inherently
not scalable. While specialized disk drives and networks
may deliver higher bandwidths, commodity hardware [8] is
more cost-effective, a key consideration for MapReduce.
(2) In MapReduce’s parallel execution, a node’s execution
includes map computation, waiting for shuffle, and reduce
computation, and the critical path is the slowest node. To
improve performance, the critical path has to be shortened.
However, the natural overlap of one node’s shuffle wait
with another node’s execution does not shorten the critical
path. Instead, the operations within a single node need to be
overlapped. (3) Simultaneously running multiple MapRe-
ductions may hide one job’s shuffle under another job’s
computation and improve cluster utilization, however, our
goal here is to improve mapreduction latency and not data
center throughput because (a) latency is important in timing
critical production runs which often chain multiple depen-
dent mapreductions many of which are shuffle-heavy and
(b) reducing latency also improves throughput (as a good
side effect) whereas multitasking multiple jobs usually
requires more memory to hold multiple program state. (4)
In MapReduce [11,13], the asynchronous nature of the
shuffle combined with the fact that there are multiple map
tasks available at every node (to exploit within-map paral-
lelism) results in some overlap between the shuffle and map
(i.e., earlier map tasks’ communication with later map
tasks’ computation). Unfortunately, overlap with map com-
putation is insufficient in shuffle-heavy MapReductions
because shuffle time is longer than map computation time
(shuffle time is 30-40% of all computation but is longer
than map computation alone). (5) Alternately, overlapping
multiple map tasks’ communications with each other (i.e.,
earlier map tasks’ communication with later map tasks’
communication) is not viable because the network bisection
is saturated. 

Instead of the above unviable options, we propose
MapReduce with communication overlap (MaRCO) based
on the novel idea of overlapping the shuffle with the reduce
computation. MaRCO achieves nearly full overlap of the
shuffle and is based on the following four key observations:
(1) Because reduce computation is long in shuffle-heavy
MapReductions, MaRCO achieves better overlap than that
with map alone. (2) Because reduce generates no network
traffic, MaRCO is not constrained by network saturation.
(3) Though reduce is dependent on shuffle data, reduce can
start operating on partial data without waiting for all the

data. Because typical reduce functions are commutative and
associative, their partial results can be re-reduced easily
without any ordering constraints to produce the correct final
output. Accordingly, MaRCO breaks up reduce into many
smaller invocations on partial data from some map tasks
while overlapping with other map tasks’ shuffle latency.
Thus, MaRCO’s eager reduce overlaps with the shuffle
while the original MapReduce execution’s lazy reduce
starts only after receiving all the shuffle data. We note that
while overlapping independent operations is common in
computer systems, overlapping dependent operations by
exploiting commutativity and associativity as done by
MaRCO is rarer. (4) In MaRCO, a final reduce step re-
reduces all the partial reduce outputs to produce the final
output. Fortunately, the partial reduce closely resembles the
original reduce and the final reduce is often identical to the
original reduce. Therefore, the extra programming effort
under MaRCO compared to that under MapReduce is mini-
mal. Thus, MaRCO maintains MapReduce’s programma-
bility advantages. Furthermore, MaRCO improves
performance on commodity cluster hardware without
increasing the hardware cost or complexity. Finally, blindly
applying partial reduce may introduce overheads for which
we employ several control mechanisms. 

We evaluate MaRCO by extending the public-domain
MapReduce implementation from Hadoop [13] and we
evaluate eleven MapReductions including a mix of shuffle-
heavy and shuffle-light MapReductions. Using a 128-node
Amazon EC2 cluster, we show that on average MaRCO
achieves 23% and 14% speedups over Hadoop on shuffle-
heavy and all MapReductions, respectively. We provide
arguments and experimental evidence that our speedups
will likely scale to larger clusters. 

In summary, the key contributions of this paper are:
• identifying the problem of exposed shuffle in shuffle-

heavy MapReductions;
• addressing the problem via the novel idea of fully over-

lapping the shuffle with the reduce; 
• employing control mechanisms to avoid overheads due

to this overlap; and
• significantly speeding up shuffle-heavy MapReduc-

tions in a complete MapReduce implementation running
on a real-world cluster.

The rest of the paper is organized as follows. We pro-
vide background on MapReduce in Section 2. We describe
MaRCO in Section 3, some related work in Section 4, and
our experimental methodology in Section 5. We present our
results in Section 6 and conclude in Section 7. 

2  MAPREDUCE: BACKGROUND

We briefly describe MapReduce with an illustrative
example. In addition to the sequencing of the various com-
putation and communication steps in MapReduce, the
description also points out the sources of communication
delays and the limited map-shuffle overlap in MapReduce
([11,13]). 

Consider the following computation expressed as a
MapReduction. The input is the directed graph G in
Figure 1(a) specified as a set of edges (each edge repre-
sented as a <u,v> tuple of two vertices as shown in
Figure 1(b)). The goal is to arrive at the adjacency list rep-
resentation of the reverse graph G’ (i.e., G’ contains edge



<v,u> if G contains <u,v>). 
In the two-phase MapReduce programming model, the

above computation can be specified as (1) a Map function
that emits a tuple <v,u> (key is v and value is u) for every
edge <u,v> in G which results in the intermediate data
shown in Figure 1(c) and (2) a reduce function that creates
a combined list of all the unique values associated with a
key and emits the <v, list(u)> as the final output, as shown
in Figure 1(d). The example highlights (shown in bold) the
MapReduce functionality on the edges incident on node C. 

To illustrate the execution of the above example on a
cluster, we consider a cluster with two machines (N = 2)
and we assume four map tasks (M = 4) and two reduce tasks
(R = 2). (In practice, the choice of the number of tasks
depends on a number of factors including task-granularity
for load balance and re-execution granularity for failure tol-
erance.) Figure 2 illustrates the execution timeline on each
of the two nodes. The activity on each node is further
divided into two rows with the top row corresponding to
map task execution and the bottom row corresponding to
reduce task execution. 

Because the map function is, by definition, an SPMD
program that is applied to all input data, the input data is
partitioned into M pieces each of which is processed by a
map task (M1 through M4 in Figure 2). To facilitate sched-
uling of the M map tasks to the N nodes, the input data is
initially placed on a global file system which makes all
input data available to all nodes. However, because the glo-
bal file system is typically implemented by using the local
disks of the machines in the cluster [3,12], access times
may be non-uniform. Consequently, to maximize locality,
the runtime system attempts to schedule map tasks to nodes
where the data is local. Such a schedule is not always guar-
anteed and there may be cases where a map task has to read
data from a remote node. These remote accesses are one
source of network communication, though the runtime
scheduling often succeeds making this communication
uncommon. 

Each map task’s output data must eventually be commu-
nicated to the various reduce tasks such that two conditions
are satisfied. First, tuples with the same key must be sent to
the same reduce task. Second, the load across reduce tasks
must be balanced. To satisfy the above two conditions, each
output tuple is assigned to one of R buckets (one per reduce
task) using a hash function on the key. For our example in
Figure 2, each map task creates two hash buckets (iR1 and
iR2 for the ith map task) because R =2. Because all map
tasks use the same hash function, tuples with the same key
are mapped to the same reduce task. Because the hash-func-
tion is expected to map evenly across all R tasks, the load
(in terms of number of tuples) assigned to reduce tasks is
more-or-less balanced. The intermediate data (i.e., all the

buckets) is held in the local disk and is not written to the
global file system due to a fault-tolerance-related trade-off
discussed at the end of this section. After each map task is
complete, reduce tasks must pull the relevant hash-bucket
of intermediate data from each map task. This all-map-to-
all-reduce communication, called shuffle, includes disk
reads at the map tasks’ nodes, the network traversal, and
disk writes at the reduce tasks’ nodes. As mentioned in
Section 1, because of the abundant parallelism within map
and reduce, and because of reduce’s dependence on map,
the map tasks occupy the entire cluster followed by the
reduce tasks instead of space-sharing the cluster with
reduce tasks. Consequently, the shuffle amounts to all-
nodes-to-all-nodes communication which crosses the net-
work bisection. Thus, the shuffle is a significant problem
for MapReductions that produce a lot of intermediate data.
Because MapReduce requires the shuffle to complete
before sort and reduce computation begins, the shuffle lies
on the critical path. 

To reduce the volume of the shuffle, MapReduce uses an
optimization called combining which performs a reduce
operation on each of the R hash buckets of a map task’s
intermediate data. The reduce operation used for combining
is often, but not always, the same as the programmer-speci-
fied reduce function. While the requirement to specify the
combiner may seem like an additional burden on the pro-
grammer, in most cases the combiner is intuitive and pro-
vides reasonable performance benefits. Figure 2 illustrates
the combiner acting on the R buckets of intermediate data
emitted by each map task and re-emitting the same number
of buckets with potentially fewer tuples in each bucket.

The shuffle is asynchronous in nature which results in
some overlap between the shuffle and map tasks. Because
reduce tasks may not be scheduled to run when map tasks
complete, it is not possible for map tasks to directly push
the shuffle data to reduce tasks. Due to its pull-based
nature, the shuffle is effectively asynchronous from the per-
spective of the map task because subsequent map tasks (M3
and M4) can begin execution without waiting for the shuffle
of the prior map tasks (M1 and M2) to complete, as illus-
trated in Figure 2. This asynchrony leads to overlap of map
computation with the shuffle. While the figure corresponds
to our example with 2 map tasks per worker node (M/N = 4/
2 = 2), in general there are multiple map tasks per node.
Because the asynchrony exists irrespective of whether a
node’s map tasks are run sequentially or in some concurrent
manner, the map-shuffle overlap exists independent of map
tasks being sequential or concurrent. Nevertheless, if the
map execution time is less than the shuffle time (typical for
shuffle-heavy MapReductions), there remains some
exposed shuffle which grows as the number of map tasks
per node grows (shaded regions in the shuffle rectangles in
Figure 2). As mentioned in Section 1, one caveat about
Figure 2 is that the map-shuffle overlap within a node
improves performance but the natural map-shuffle overlap
across nodes does not because the critical path through a
single node determines overall execution time. 

After the shuffle is complete, each reduce task sorts all
its data to group tuples with the same key. In the example,
reduce task R1 sorts (by the key) its input data (iR1 for i =1
thru 4). In addition to grouping tuples with the same key,
sorting has the added advantage that the output data can be
searched easily —  an important consideration when
MapReduce is used for indexing. Hadoop performs some
in-memory pre-sorting of intermediate data while waiting
for the rest of the intermediate data to be received at the

FIGURE 1:  MapReduce Example
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reduce task. Further, Hadoop opportunistically performs in-
memory merging of pre-sorted intermediate data at each
reduce task. Both these optimizations essentially place a
part of the sort computation in parallel with map computa-
tion, allowing the critical path to be shortened. Finally, after
sorting the intermediate data, reduce computation is per-
formed on each such set of tuples with the same key.
Another reason for the long execution times of shuffle-
heavy MapReductions (other than the shuffle bottleneck) is
that the volume of intermediate data directly translates to
long sort and reduce times. The final reduce task output is
written to the global file system which involves communi-
cation over the network to remote nodes. Because the final
output is buffered and the actual communication occurs
whenever the buffers are full, the communication is inter-
leaved with final reduce computation. Using asynchronous
writes can overlap the interleaved output communication
and reduce computation which would be beneficial for
shuffle-heavy MapReductions whose outputs are large.
Therefore, we modified Hadoop to employ asynchronous
writes. 

Handling failures is one of the key motivations for
MapReduce. To that end, fault tolerance for input and final
output data is achieved via replication in the underlying
global file system. To achieve fault tolerance for computa-
tion and intermediate data (from map tasks), MapReduce
uses re-execution. When a map task fails without complet-
ing, the task is re-executed on another machine. Because
the input data on the global file system is replicated (and is
not lost due to the failure), re-execution on other machines
is always an option. Note that the intermediate data, which
is present only on the local file system becomes unavailable
when a machine fails necessitating re-execution of even
completed map tasks. This design choice, previously men-
tioned in this section, is made in recognition that re-execu-
tion of map task is less expensive than replication of the
intermediate data because replication cost is incurred each
time whereas re-execution cost is incurred only in case of
failures. Alternate designs have been proposed in other con-
texts where the decision to replicate or not may depend on
whether re-execution is more expensive than replication
[9]. Finally, MapReduce uses re-execution to handle the
tasks on slow nodes that have not failed (i.e., the nodes
respond to the master node, but their map/reduce tasks lag
far behind similar tasks on other nodes). In such cases,
back-up tasks are launched pro-actively assuming the origi-
nal tasks are stuck due to some machine-specific perfor-
mance glitch and results from the earliest completing task
are used.

3  MARCO
The goal of MaRCO is to overlap the significant

exposed shuffle delays (for MapReductions with large

amounts of intermediate data) with useful computation. As
mentioned in Section 1 and Section 2, the asynchronous
nature of pull-based shuffle results in some shuffle-map
overlap, but the overlap is insufficient if a map computation
time is less than the shuffle delay. To increase overlap and
reduce the critical path on individual nodes in the cluster,
MaRCO eagerly executes reduce computation which offers
more work to overlap with the shuffle (Observation 1 from
Section 1). Because reduce computation operates on sorted
data, our eager reduce involves some eager sorting, called
as partial sort. Eager execution of sort and reduce is possi-
ble because intermediate data begins arriving at the reduce
task soon after the first map task completes (and continues
as subsequent map tasks complete). An added advantage of
overlapping the shuffle with partial sort and reduce is that,
unlike map tasks, partial reduce do not generate any addi-
tional network traffic (Observation 2 from Section 1). 

Figure 3 illustrates the execution time line of MaRCO
on a two-node cluster with map tasks shown in the top row
and reduce tasks shown in the bottom row for each node.
Similar to Figure 2, the rectangle of each map task contains
(in order) the delay of reading input data which may be
local or remote (cross-hatched rectangle), the map compu-
tation, the emitting of R hash buckets of intermediate data,
the operation of a combiner and the emitting of R combined
hash buckets of intermediate data. The partial reduce tasks
at every node overlap with the shuffle (and run concurrently
with the node’s on-going map tasks). Because of the work
done by the partial sort and reduce tasks, the final sort and
reduce tasks complete earlier than in MapReduce
(Figure 2), resulting in the shortening of the critical path of
execution.

We now describe MaRCO’s implementation of eager
partial sort (Section 3.1) and partial reduce (Section 3.2)
which goes significantly beyond the limited forms of eager
sort/reduce (i.e., combiners, presorting, in-memory merg-
ing) that exist in MapReduce as described in Section 2. 

3.1 Eager Partial Sort

Google’s MapReduce implementation, as described in
[11], lazily sorts the intermediate data after all the data is
received. Hadoop achieves a limited form of eager in-mem-
ory sorting and merging before writing sorted runs to disk.
These sorted runs can span multiple map tasks’ intermedi-
ate data depending on the size of the in-memory buffer. The
creation of sorted runs converts the final sort to a merge of
the multiple sorted runs. 

In contrast, MaRCO’s eager sorting approach further
merges the disk-resident sorted runs (created by the in-
memory merge) without waiting for all intermediate data.
This merging creates longer and fewer sorted runs, which
decreases the amount of work to be done in the final sort.
Further, MaRCO’s eager sorting benefits from caching

FIGURE 2: MapReduce Execution Time Line (M=4, R=2, N=2)
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effects when eager partial sort may find the sorted runs in
memory. Because MaRCO uses both eager partial sort and
partial reduce in conjunction, partial sort is invoked only
when a partial reduce is invoked. The precise policy that
controls when, and over what data, partial reduce (and thus
partial sort) operates upon is explained below in
Section 3.2. Note that the merging performed by eager par-
tial sort is similar to what an external merge sort would
achieve in Hadoop, except that the merging is staggered
over the duration of the shuffle. 

3.2 Eager Partial Reduce

Similar to partial sorting, reduce functionality can also
be applied without waiting for all intermediate data to be
received. Because the partial reduce operates on subsets of
tuples, the functionality of the partial reduce in MaRCO
must be commutative and associative and there must be a
final reduce operation to re-reduce all the partially-reduced
data. This requirement is not a problem in practice as com-
mon reduce functions are often commutative and associa-
tive, as mentioned in Section 2. In such cases, the partial
reduce, the combiner and the final reduce could, in theory,
be the same. In practice, however, because the combiner
operates on only one map task output while the partial
reduce combines several map task outputs, the combiner is
light-weight (e.g., duplicate elimination or summation)
whereas the partial reduce is more heavy-weight (e.g., set
union, list building) to match their respective opportunities.
Indeed, the partial reduce and the combiner functions are
different for most of our shuffle-heavy MapReductions. For
instance, in our benchmark term-vector, combiner com-
bines n <word, 1> into <word,n> but partial-reduce builds
tuples of the form <host, {word1:count1, word2:count2, ...,
wordk:countk}> (See Table 1). When the reduce function is
non-commutative or non-associative, an alternate partial
reduce function can be specified in MaRCO. The additional
burden on the programmer to extract and specify the appro-
priate commutative and associative partial reduce function
from the full (and potentially non-commutative or non-
associative) reduce function is only slightly higher than the
burden imposed by the use of combiners which MapReduce
implementations already support (Observations 3 and 4 in
Section 1). 

Beyond the difference in functionality, combiners and
the partial reduce differ at a more fundamental level. First,
the combiners are most effective in shuffle-light MapRe-
ductions which summarize data and hence are amenable to
combining. However, because data reorganization does not
lend itself to combining, the combiners achieve only mar-
ginal reduction in the shuffle volume in shuffle-heavy
MapReductions, even if applied to tuples of multiple map
tasks. Therefore, the partial reduce’s ability to hide the
latency of the inevitably high shuffle volume is fundamen-

tal for achieving performance in shuffle-heavy MapReduc-
tions. Thus, the partial reduce is a new tool to improve
MapReduce’s performance for the important class of shuf-
fle-heavy MapReductions. Second, while invoking the
combiner is straightforward, the partial reduce introduces
overhead (both CPU and disk I/O) that can hurt perfor-
mance if the invocation and scheduling are not controlled
properly (e.g., uncontrolled partial reduce incurs 11% aver-
age slowdown over MapReduce). There are three types of
such overhead which MaRCO controls by employing three
mechanisms. 

3.3 Controlling Partial Reduce Overhead 

First, unlike eager partial sort where there was no
increase in the total amount of work compared to lazy sort-
ing (any merging of sorted runs achieved by the partial sort
eliminates an equivalent merge that must occur at the final
sort), the partial reduce introduces overheads. Specifically,
the writing of the partially reduced output to disk and read-
ing that data in the final reduce operation are both over-
heads that do not occur in the lazy reduce version.
Accordingly, we observe that for the partial reduce to do
useful work and decrease the burden on the final reduce, the
partial reduce must operate on multiple tuples with the
same key and emit a single reduced tuple. Reading tuples
and emitting them back unchanged does not decrease the
amount of work for the final reduce. Instead, given that the
combiners already eliminate duplicate keys in the output of
a single task, tuples with the same key must be aggregated
across the intermediate data of multiple map tasks. To this
end, we impose a minimum threshold, called
start_threshold, the number of map task outputs that must
be received at a reduce task before a partial reduce can
commence. The choice of the threshold is driven by a trade-
off between the overheads and the exposed shuffle. On one
hand, waiting for the intermediate data of a large number of
map tasks (i.e., setting a high value for start_threshold)
results in wasted opportunity where the exposed shuffle is
not overlapped with the partial sort/reduce. But setting a
high value for start_threshold is likely to decrease over-
heads because it is more likely that multiple tuples with the
same key will be encountered when larger sets of interme-
diate data are considered. Current MapReduce implementa-
tions can be interpreted as one extreme of this trade-off,
effectively minimizing overhead but incurring the penalty
of all the exposed shuffle. On the other hand, beginning the
partial reduce operations on data from only a few map tasks
increases the overlap of the partial reduce with the shuffle
communication of early map tasks but decreases the
amount of useful work accomplished in the partial reduce
because there may be fewer tuples with the same key. We
experimentally determined the appropriate threshold
start_threshold to be 8. Finally, we observed that shuffle
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data is initially slow (because all map tasks do not finish at
the same time). To accommodate this slow-start phenome-
non, we set start_threshold to 4 for the first two partial
reduce invocations and 8 for subsequent partial reduce
invocations. While Figure 3 shows the case of
start_threshold = 0 where R1 (and R2) partial sort and
reduce start before receiving any intermediate data, a non-
zero value of start_threshold would imply that R1 (and R2)
partial sort and reduce would start later —  after enough
data is received. 

Second, the partial reduce computation must remain hid-
den under the shuffle without extending the execution time.
Typically, the partial reduce operations that begin when the
shuffle is almost complete may continue execution even
after the shuffle is complete. Avoiding such non-over-
lapped partial reduce is important because such partial
reduce extends overall execution time irrespective of
whether the partial reduce does useful work or not. In cases
where the partial reduce achieves little useful work (i.e.,
there is little decrease in the number of tuples after the par-
tial reduce due to the nature either of the partial reduce
function or of the data), the non-overlapped partial reduce
obviously extends execution time. Even in cases where the
partial reduce does useful work, the final reduce is a more
efficient way to perform the computation because the final
reduce has no overheads. MaRCO addresses this problem
by prohibiting further partial reduce invocations after a
fraction, called stop_fraction, of the shuffle data is
received. However, the on-going invocations are not
aborted. 

Third, the partial reduce must not hinder map computa-
tion by contending for CPU and disk resources. MaRCO
employs two schemes to address CPU contention. (1)
MaRCO assigns low priority to the partial sort/reduce task,
ensuring that the partial sort/reduce is scheduled only when
map tasks are not runnable. (2) While our description of
MaRCO assumed a single core per node and a single reduce
task per node, in general there may be multiple reduce tasks
per node and each node may have a multicore processor. In
such cases, MapReduce can run as many reduce tasks per
node as the number of cores (say C). Subsequent reduce
tasks, if any, are started as and when reduce tasks complete
such that at most C reduce tasks run at any given time.
However, for MaRCO, each reduce task also adds partial
reduce computation which often contends with map tasks
for CPU resources. To decrease the contention, we begin
execution with only one reduce task (and its associated par-
tial reduce computation) instead of all C reduce tasks. By
the time the first reduce task receives all its shuffle data, all
map tasks (on all nodes) must be complete. Consequently,
the remaining (C-1) reduce tasks can be scheduled after this
time without any possibility of interfering with the node’s
map tasks. The sole purpose of this optimization, called
reduce staggering, is to avoid contention from partial
reduce computation. Therefore, reduce staggering is not
applicable to (and does not improve) MapReduce. 

MaRCO cannot eliminate disk I/O contention, unlike
CPU contention. However, because disk I/O bandwidth is
less of a bottleneck than network bisection bandwidth, disk
contention results in a modest increase in map execution
time which is more than compensated by the overlapping of
useful work with the shuffle. 

We end our description with three observations. First,
though our description of MaRCO is limited to a single
level of partial reduce operations before the final reduce, it
is possible to have multiple levels of partial reduce where

each upper level partial reduce operates on the outputs of
lower-level partial reduce to further increase the amount of
computation that is available for overlapping with the shuf-
fle. We did not explore this option as a single level of par-
tial reduce was adequate to overlap all the shuffle in our
benchmarks.

Second, one may think that MaRCO reduces MapRe-
duction execution time by increasing CPU and I/O utiliza-
tion due to partial sort/reduce (including overheads) and
that such increased utilization may adversely affect the
throughput of other applications that may be sharing the
cluster. However, because the partial reduce tasks are depri-
oritized, they do not steal CPU or I/O from other applica-
tions when resources are heavily utilized. On the other
hand, when the cluster is underutilized, MaRCO exploits
idle resources to improve the latency of shuffle-heavy
MapReductions.

Finally, MaRCO does not make any changes to MapRe-
duce’s basic re-execution based fault-tolerance mechanism.
On the input end of the partial sort/reduce, MaRCO does
not modify the shuffle implementation. As such, any map
task failures are handled transparently by the shuffle imple-
mentation, which automatically causes map task re-execu-
tion if any intermediate data cannot be retrieved. Note that
node failures after intermediate data has been retrieved do
not cause any re-execution of map tasks. On the output end,
our design choice of emitting partial sort/reduce output to
local disk implies that the work done by partial sort/reduce
is lost when a machine fails. Recall that this choice is
driven by the same rationale that keeps map tasks’ interme-
diate data in local disks. Thus, entire map tasks and (partial
and final) reduce tasks re-execute on failures exactly as in
MapReduce.

4  RELATED WORK

There have been some follow-on papers on MapReduce.
Map-reduce-merge [23] extends MapReduce to include a
merge phase after reduce to enable database-join opera-
tions. Another paper [25] reduces the unnecessary launch of
back-up tasks in heterogeneous clusters, which have fast
and slow machines, by observing that tasks on slow
machines would lag behind others even in the absence of
any performance glitches. Mantri[26] explores the vari-
ous causes of laggards in further depth, and develops
cause- and resource-aware techniques to act on outliers
more intelligently and earlier in their lifetime. These
ideas are orthogonal to MaRCO which overlaps the shuffle
with partial sort and partial reduce. Finally, a recent paper
argues that databases perform better than MapReduce
[19]. However, the paper concedes that a) while MapRe-
duce provides fault tolerance for both data and compu-
tation, databases provide fault tolerance only for data;
and b) because loading data is significantly slower in
databases than in MapReduce which uses raw data
dumps, MapReduce is a better candidate when data
changes frequently as is the case for Web data.

Dryad [16] and DryadLINQ [24] offer a framework that
is more general than MapReduce with design features that
enable (a) efficient database joins, and (b) automatic opti-
mizations within and across MapReductions using tech-
niques similar to query execution planning. A Dryad-based
MapReduce implementation can include automatic combin-
ing at the node-level across multiple map tasks’ output to
reduce the shuffle volume. As discussed before, partial
reduce’s latency hiding is more important and effective



than such combining for shuffle-heavy MapReductions.
Such latency-hiding techniques may be extended to other
MapReduce implementations including Dryad-based
implementations.

Hadoop proposes to execute the combiner optionally
at the reduce side [27] to prune the data that goes to
reduce. However, the combiner is usually too light-
weight to achieve sufficient overlap with the shuffle, and
running the combiner at the reduce side is helpful only
if the combiner’s functionality is a major portion of the
reduce functionality. Moreover, combiners are not
effective (and hence not applied) for shuffle-heavy
MapReductions where much of the shuffle is exposed
(details in Section 3.2). Condie et al. [28] propose
MapReduce Online where reduce operates on partially
received data and emits partial results to the user.
Although this scheme makes partial results available to
the user earlier in time and could be useful to estimate
the output, it is not applicable to a majority of MapRe-
ductions where complete result (final reduction) is
desired by the user. Verma et al. [29] propose breaking
the map output synchronization barrier by omitting the
sort phase (i.e., instead of sorting all incoming tuples in
one shot, insert each tuple into its matching, unsorted
list). However, many applications require sorted output
(e.g., for analysis purposes). Further, this approach’s
match and insert is significantly less computationally
efficient than sorting (i.e., increases reduce phase run
time and memory footprint). 

Finally, in other orthogonal research, MapReduce has
been proposed as a viable programming model for multi-
cores [10,21] and GPUs [14,18]. 

5  EXPERIMENTAL METHODOLOGY 
We evaluate our ideas by modifying Hadoop’s MapRe-

duce implementation [13].

5.1 Benchmarks 

Because there are only three reasonably-sized MapRe-
ductions —  binary-sort, word-count, and grep —  in the
Hadoop release, we wrote eight more covering both shuf-
fle-heavy and shuffle-light categories. 

5.1.1 Shuffle-heavy MapReductions

Our shuffle-heavy applications include binary-sort,
term-vector, inverted-index, self-join, adjacency-list, and k-
means, which are described in Table 1. We note that the
partial reduce is different from the combiner for k-means,
inverted-index, self-join, and adjacency-list, as suggested in
Section 1. We use the same light-weight combiner in both
Hadoop and MaRCO. One may think that Hadoop would
perform better by using the heavy-weight partial reduce as
the combiner. However, we found that such usage results in
worse performance for Hadoop. 

We summarize the input data sizes, dataset descriptions,
and benchmark characterization in Table 2. The input is
split among multiple map tasks each of which is given is 50
MB of input data (or less if the input is not a multiple of 50
MB). This input split size follows the recommendation in
[11] and remains the same for Hadoop and MaRCO, and
across the benchmarks. We also show the run times of the
base case (described later) to give an idea of how long our
benchmarks run. Partial reduce for binary-sort is pure over-
head (last column) because partial reduce simple emits the

tuples without performing any of the final reduce’s work. In
term-vector, partial reduce is only partly useful because the
final reduce discards infrequent words some of which are
processed by the partial reduce. For the other shuffle-heavy
MapReductions, partial reduce is useful and long (because
the original reduce is long). 

These benchmarks have substantial communication,
providing significant opportunity. Though some of that
opportunity is hidden under map computation in Hadoop,
map computation alone is insufficient to fully hide commu-
nication. MaRCO hides most of this communication under
the useful work done by partial (in-built) sort and the partial
reduce, with the exception of  binary-sort where the partial
reduce is all overhead but the partial sort is useful.

All the benchmarks write their final outputs to the repli-
cated file system which adds some run-time overhead
despite the writes being asynchronous. Unfortunately, this
work cannot be done in partial reduce and hence cannot be
overlapped with the shuffle. 

5.1.2 Shuffle-light MapReductions 

Our shuffle-light MapReductions include word-count,
classification, grep, histogram-movies, and histogram-rat-
ings, which are described in Table 3. 

Because the shuffle and the reduce work are small in
these benchmarks, there is little opportunity for MaRCO.
Table 2 includes input data sizes, dataset descriptions, and
benchmark characterization for these benchmarks. The par-
tial reduces for these MapReductions are either pure over-
head (as in binary-sort) or are useful and short (because the
original reduce is short). We note that the shuffle-heavy
MapReductions run much longer than the shuffle-light
ones, indicating the importance of optimizing shuffle-heavy
MapReductions. 

We note that the difference in shuffle volumes between
shuffle-light and shuffle-heavy MapReductions arises from
the fundamental nature of the MapReductions. Shuffle-light
MapReductions correspond to data summarization tasks
(e.g., counting, classifying and binning) which naturally
produce a lot less output than input, whereas shuffle-heavy
MapReductions correspond to data re-organization (e.g.,
sorting, indexing, and clustering) which tend to output as
much as or more than the input, as mentioned in Section 1.

5.2 Implementation

Hadoop implements MapReduce as a run-time system to
be linked in with the user-supplied Java classes for map,
combiner (optional), and reduce functionality. Hadoop uses
a single global manager thread for the whole cluster. The
global manager orchestrates the MapReduction execution
by (1) assigning map/reduce tasks to per-node local man-
ager threads, (2) monitoring the health of nodes via time-
outs, and (3) re-assigning tasks to fault-free nodes upon
node failure. Hadoop uses remote procedure call for the
shuffle. All disk I/Os use in-memory buffering (75 MB
default).

We implement MaRCO which takes user-provided Java
methods for map in map class and combiner, partial reduce
and final reduce methods in reduce class. To hide the shuf-
fle, MaRCO launches one reduce thread at the start of the
map phase. While Hadoop++ concurrently runs 4 map
threads and 2 reduce threads on one node (2 CPUs),
MaRCO runs 2 map threads and 2 (low-priority) reduce
threads using reduce staggering (Section 3.3). MaRCO runs
fewer map threads to make room for the partial reduce’s



 
Table 1: Shuffle-heavy benchmarks

Binary-sort is based on NOWsort [7] for sorting <binary key,value> tuples on the binary keys. The map task is identity 
function which simply reads the tuples. Because sorting produces as many output records as input records, there is no 
combiner (Section 2). The sorting occurs in MapReduce’s in-built sort while reduce tasks simply emit the sorted 
tokens. In MaRCO, partial sorting occurs in the built-in sort while partial reduce merely outputs the partially-sorted 
tokens which are merged by the final reduce. Because the partial reduce does not perform any of the final reduce’s 
work, partial reduce is pure overhead (though small). To distinguish between the binary-sort application and the in-
built sort, we will refer to them as binary-sort and in-built sort, respectively. 

Term-vector determines the most frequent words in a host and is useful in analyses of a host’s relevance to a search. 
The map tasks emit <host, termvector> tuples where termvector is itself a tuple of the form <word, 1>. The combiner 
combines n tuples for the same word from one map task into one <word, n> tuple. The reduce task discards the words 
whose frequency is below some cut-off and outputs a list of the rest of the words and their counts as a tuple of the form 
<host, {word1:count1, word2:count2, ...., wordk:countk}>. In MaRCO, the partial reduce adds up partial counts for a 
given word at a host and builds partial lists which are merged by the final reduce. Because the final reduce discards 
some of the (infrequent) words processed by the partial reduce, some of the work done by partial reduce is useless. 

Inverted-index takes tuples of the form <word:file, n> where n is the number of appearances of word in file and gener-
ates lists of files containing a given word in decreasing order of frequency of appearance. Inverted-index is similar to 
constructing a reverse web-link graph for identifying documents containing a given URL instead of a given word. The 
map tasks produce <word, {n:file}> tuples. Because the input already specifies the count for a given word in a file, there 
is no opportunity for combining counts here. Reduce task builds a list of all the files that contain a given word and the 
number of occurrences in each file, and produces tuples of the form <word:{n1:file1, n2:file2, ...., nk:filek}>. In MaRCO, 
the partial reduce tasks build partial lists of the above form and the final reduce merges the partial lists. 

Self-join is similar to the candidate generation part of the a priori data mining algorithm to generate association among 
k+1 fields given the set of k-field associations [5]. Map tasks receive k-sized candidate lists of the form {element1, 
element2, ...., elementk} in alphanumerically sorted order. The map tasks breaks the lists into <{element1, element2, ...., 
elementk-1}, {elementk}> tuples. The combiner simply removes duplicates within one map task’s output. Reduce pre-
pares a sorted list of all the map values for a given key by building <{element1, element2, ...., elementk-1}, {element’1, 
element’2, ...., element’j}> tuples. From these tuples, k+1-sized candidates can be obtained by appending consecutive 
pairs of map values element’i, element’i+1 to the k-1-sized key. By avoiding repeating k-1-sized key values for every 
pair of map values in the list, the tuples are a compact representation of the k+1-sized candidates set. In MaRCO, partial 
reduce produces partial sorted lists of a subset of map values and the final reduce merges the partial lists.

Adjacency-list is similar to search-engine computation to generate the adjacency and reverse adjacency lists of nodes of 
a graph for use by PageRank-like algorithms. Map tasks receive as inputs graph edges <p,q> of a directed graph that 
follows the power law of the World-wide Web. For the input, we assume the probability, that a node has an out-degree 
of i, is proportional to 1/(i2) with an average out-degree of 7.2. Map tasks emit tuples of the form <q, 
from_list{p}:to_list{}> and <p, from_list{}:to_list{q}>. The combiner simply removes duplicate tuples within one map 
task’s output. For a given key, reduce generates unions of the respective lists in the from_list and to_list fields, sorts the 
items within the union lists, and emits <x, from_list{sorted union of all individual from_list}:to_list{sorted union of all 
individual to_list}> tuples. In MaRCO, partial reduce produces partial sorted unions which are merged together by the 
final reduce. 

k-means is a popular data mining algorithm to cluster input data into k clusters[1]. k-means iterates to successively 
improve the clustering. We classify movies based on their ratings using Netflix’s movie rating data [2] which is of the 
form <movie_id, list{rater_id, rating}>. We use random starting values for the cluster centroids. Map computes the 
cosine-vector similarity of a given movie with the centroids, and determines the centroid to which the movie is closest 
(i.e., the cluster to which it belongs). Map emits <centroid_id, (similarity_value, movie_data)> where movie_data is 
(movie_id, list{rater_id, rating}). While movie_data increases shuffle volume and is not needed for reduce, the data is 
needed for the next iteration of k-means. Because there is no sum or list involved, there is no opportunity for a com-
biner. Reduce determines the new centroids by computing the average of similarity of all the movies in a cluster. The 
movie closest to the average is the new centroid and reduce emits the new centroid’s and all movies’ tuples to be used 
in the next iteration. The algorithm iterates until the change in the centroids is below a threshold. In MaRCO, the partial 
reduce computes partial averages of similarity of a subset of movies in a cluster and the final reduce computes the final 
averages, and identifies and emits the new centroids. 



CPU utilization. The reduce thread launches child threads
which perform partial sort and partial reduce tasks when the
number of map outputs exceeds the start_threshold (4 for
the first two launches and 8 for the rest). To prevent the par-
tial reduce from delaying the final reduce after the map
phase is complete (Section 3.2), the child threads are not
launched once reduce threads receive 90% (stop_fraction =

0.9) of map outputs.
We experimentally determined the best number of map

threads to be run concurrently on one CPU to hide one map
task’s disk I/O under another’s computation (Hadoop’s
default is 1 map thread). The best number varies between 2
and 4 for most of our benchmarks. We clarify that this num-
ber affects only the map-disk-I/O overlap and not map-

Table 2: Benchmark Characteristics (* relative to total time)

Benchmark Input 
size 

Input data #maps &
#reduces 

Base 
runt-
ime 

Shuf
fle 
vol-
ume

Map 
time*

Red
uce 
time
*

Partial 
reduce

binary-sort 85GB synthetic, random 1500 & 30 3045 s high short long pure overhead

term-vector 15GB Project Gutenberg 300 & 30 3082 s high very long short useful & short

inverted-index 22GB Project Gutenberg 330 & 30 1013 s high long long useful & long

self-join 15GB synthetic, k = 5 300 & 30 977 s high long long useful & long

adjacency-list 30GB synthetic 600 & 30 1856 s high long long useful & long

k-means 15GB Netflix data, k = 6 300 & 6 1550 s high long long useful & long

word-count 15GB Project Gutenberg 300 & 30 1448 s little very long short useful & short

classification 15GB Netflix data, k = 6 300 & 6 308 s little very long short pure overhead

grep 15GB Project Gutenberg 300 & 1 203 s little very long short pure overhead

histogram-movies 15GB Netflix data 300 & 8 195 s little very long short useful & short

histogram-ratings 15GB Netflix data 300 & 5 374 s little very long short useful & short

 fs
Table 3: Shuffle-light benchmarks

Word-count counts the occurrences of words in the input and is similar to determining the frequency of URL occur-
rences in a document. In Hadoop’s word-count, each map task emits <word, 1> tuples. As in term-vector, the combiner 
adds up the count for the same word from one map task. The reduce tasks simply add up the counts for a given word from 
all the map tasks and output the final count. In MaRCO, the partial reduce tasks add up a word’s partial counts from mul-
tiple map tasks.

Classification classifies the input into one of k pre-determined clusters (unlike k-means, the cluster centroids are fixed). 
Similar to k-means, classification uses Netflix movie rating data which is of the form <movie_id, list{rater_id, rating}>. 
Similar to k-means, map computes the cosine vector similarity of a given movie with the centroids, and determines the 
centroid to which the movie is closest (i.e., the cluster to which it belongs). Map emits <centroid_id, movie_id>. Unlike 
k-means, the details of movie ratings are not emitted because there are no further iterations which may need the details. 
There is no opportunity for a combiner. Reduce is identity function which collects all the movies in a cluster and emits 
<centroid_id, movie_id>. In MaRCO, the partial reduce is identity function. 

Grep searches for a pattern in a file and is a generic search tool used in many data analyses. Map outputs lines containing 
the pattern as <line, 1> tuples. There is no opportunity for a combiner. Reduce is identity function which just outputs the 
tuples from map. In MaRCO, partial reduce is identity function as is the final reduce.

Histogram-movies generates a histogram of input data and is a generic tool used in many data analyses. We use the Net-
flix movie rating data. Based on the average ratings of movies (ratings range from 1 to 5) we bin the movies into 8 bins 
each with a range of 0.5. The input is of the form <rater_id, rating, date> and the filename is movie_id. Map computes 
the average rating for a movie, determines the bin, and emits <bin, 1> tuples. The combiner combines the tuples for the 
same bin from one map task. Reduce collects all the tuples for a bin and outputs a <bin, n> tuple. In MaRCO, the partial 
reduce adds up partial counts of tuples for the same bin.

Histogram-ratings generates a histogram of the ratings as opposed to that of the movies based on their average ratings. 
The input is same as that for histogram-movies. Here, we bin the ratings of 1-5 into 5 bins and map emits <rating, 1> 
tuple for each review. The combiner combines tuples with the same rating. Reduce collects all the tuples for a rating and 
emits a <rating, n> tuple. In MaRCO, the partial reduce adds up partial counts of tuples for the same rating. 



shuffle overlap which occurs irrespective of the number of
concurrent map tasks, as mentioned in Section 2. Because
setting the number to be different for each benchmark
would be hard to do in practice, we use 2 map threads,
which gives the best average performance for all the bench-
marks. In addition, we modified Hadoop to use asynchro-
nous writes for the final reduce output (Section 2). In
shuffle-heavy MapReductions the final output is large and
the asynchronous writes hide much of the write latency.
The Hadoop variant with 2 map threads and asynchronous
writes, called Hadoop++, serves as our base case for per-
formance comparisons with MaRCO. Because asynchro-
nous write is a well-known optimization that is orthogonal
to MaRCO, we include asynchronous writes in both
Hadoop++ and MaRCO. To ensure that Hadoop++ is a
strong base case, we compared Hadoop++ with the default
Hadoop. We found that Hadoop++ achieves 6-19% and 2-
4% speedups on our shuffle-heavy and shuffle-light
MapReductions, respectively. 

5.3 Platform

We use a 128-node Amazon EC2 cluster to evaluate
MaRCO. Each node is a Xen-based virtual machine with a
virtual core of 2-3 GHz Opteron or Xeon, 1MB L2 cache,
1.7 GB RAM, 160GB SATA disk drives rated at 2400
Mbps peak bandwidth, running Linux 2.6.16. The experi-
ments for this paper ran for more than 1000 hours and buy-
ing that much time on the Amazon cluster is expensive.
Consequently, we show speedups on the Amazon cluster
for a representative subset of our benchmarks and use our
self-owned 16-node cluster to show more detailed results.
In our 16-node cluster, each node is a 2.8-GHz dual-core
Xeon with 2 MB L2 cache and 4GB RAM running Linux
2.6.9 and SATA150 disk drives rated at 1200 Mbps peak
bandwidth and 600-800 Mbps observed bandwidth. Later in
this section we provide some arguments and experimental
results on why the results from our small cluster would hold
for much larger clusters. In our cluster, one of the nodes
runs the global manager which manages the entire cluster,
and this node does not run any worker (i.e., MapReduce
computation) threads which run on the rest of the 15 nodes. 

Because of real system artifacts such as differences in
disk seek times and OS scheduling variations, the execution
time for the same job can vary across runs. To account for
this effect, we repeat each run 6 times to achieve a confi-
dence level of 95%. We determined the number of repeti-
tions using standard statistical calculations based on the
observed variance and Student’s t distribution [4,6]. 

The cluster network is a gigabit ethernet which com-
bined with the relatively small size of our cluster results in a
much higher per-node bisection bandwidth than that avail-
able in a typical large cluster. To simulate limited bisection
bandwidth, we use the network-utility tools tc and iptables
to limit the bandwidths from one quarter of the cluster to
another to some parameter value without limiting the
within-quarter bandwidth. We vary this parameter between
75-25 Mbps (typical per-node bisection bandwidth for large
clusters) in our experiments. Because limiting the band-
widths of all possible bisections is hard to do, our method
approximates by limiting the bandwidths of only some
bisections and not all. This approximation only makes our
results conservative by reducing our opportunity. 

Though we simulate limited bisection bandwidth, there
still remains the question of how our speedups would scale
to larger clusters. In general, speedups may not scale due to

inherent bottlenecks either in the applications such as load
imbalance and synchronization overhead, or in the hard-
ware such as network bandwidth. Except for the shuffle,
there are no other synchronizations in MapReductions
which are well load-balanced and have abundant parallel-
ism. Thus, the only bottleneck that can prevent speedups
from scaling to larger clusters is the shuffle due to larger
clusters’ lower per-node bisection bandwidths. 

By limiting this bandwidth in our small cluster to the
amounts typically seen in larger clusters, we claim that the
run times on a small cluster with small input would be close
to those on a larger cluster with larger input if the following
two conditions are met. (1) The per-node workload (per-
node map and reduce workload) remains the same as the
input data size is scaled up for larger clusters. (2) The node
hardware characteristics (e.g., CPU speed and local disk
bandwidth) are the same for the small and larger clusters.
With the run times of the small and larger clusters being
close, MaRCO’s speedups would hold as the cluster size is
increased. As evidence, we scale our cluster size from 8
nodes to 29 nodes and the input data size accordingly, while
keeping the per-node bisection bandwidth constant at 50
Mbps and the per-node workload constant. In Figure 4, we
show Hadoop++’s and MaRCO’s run times on the different
cluster sizes normalized to their respective run times on 8
nodes. We show the run times’ statistical range using lines
on top of the bars. The run times remain practically the
same (i.e., within statistical error) as the cluster size is
increased, implying that our small-cluster results will likely
hold for larger clusters. Because we could not get long-term
access to the 29-node cluster, we use our 16-node cluster
for the rest of the experiments.

6  EXPERIMENTAL RESULTS

We start with quantifying MaRCO’s performance
improvements over Hadoop’s assuming no faults for sim-
plicity, followed by a breakdown of execution time to
explain the improvements. We then present performance in
the presence of faults. Finally, we present results for our
improvements’ sensitivity to the network bisection band-
width. 

6.1 Performance (no faults)

We show results for our 16-node cluster first and then
for a 128-node Amazon EC2 cluster.

FIGURE 4: Scaling
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6.1.1 Performance on 16-node cluster

We compare MaRCO with Hadoop++ which, recall
from Section 5.2, runs two map tasks per processor for bet-
ter overlap between the shuffle and map tasks and employs
asynchronous writes for the final reduce output. For
MaRCO, we run one map thread and one partial-sort-and-
reduce thread (deprioritized) per processor, use
start_threshold = 8 (4 for the first two invocations) and
stop_fraction = 0.9, and employ reduce staggering
(Section 3.2). We show two variants of MaRCO, the first
one is called MaRCO-no-partial-reduce, which overlaps
only partial sort with the shuffle and does not perform any
partial reduce. The second variant is MaRCO-no-control
which does not employ any of the control mechanisms of
Section 3.3. In MaRCO-no-control, the partial reduces are
not deprioritized, start_threshold = 1 and stop_fraction =
1.0 (further partial reduces are not invoked once all the map
data is received).

In Figure 5, the Y-axis shows the performance of
MaRCO, MaRCO-no-partial-reduce, and MaRCO-no-con-
trol normalized to that of Hadoop++. The X-axis shows our
benchmarks, grouped as shuffle-heavy and shuffle-light) in
the order of decreasing performance improvements of
MaRCO to show clearly the trends across our benchmarks.
We show the statistical range across the runs using lines on
top of the bars. The numbers below the bars show the per-
cent speedups for an ideal case whose runtime is
Hadoop++’s runtime after removing the minimum of shuf-
fle time (disk + network) and final sort + reduce time. Thus,
the ideal case represents the shuffle being hidden to the
maximum extent possible. 

The ideal speedups are in the range of 15-40% for the
shuffle-heavy MapReductions. The high speedups indicate
that the shuffle introduces considerable runtime overhead.
MaRCO achieves good improvements (12-28%) over
Hadoop++ for the shuffle-heavy MapReductions. Inverted-
index, k-means, adjacency-list, and self-join achieve 28%,
26%, 24%, and 22% improvements, respectively. These
four programs have high shuffle volume and long reduce
time (Table 2) that can be overlapped. Term-vector and
binary-sort achieve less improvements, 13% and 12%
respectively. Despite its high shuffle volume, term-vector’s
improvement is less because the reduce computation is
short and also some of partial reduce’s work is useless
(Table 2). Similarly, binary-sort also has high shuffle vol-
ume but its partial reduce does not do any useful work,
leaving only partial-sort to overlap with the shuffle. Due to
lack of opportunity, the shuffle-light MapReductions
improve only modestly (ideal speedups 4-5% and real
improvements 2-3%). MaRCO’s improvements are close to
the ideal speedups in many cases. MaRCO’s improvements
for inverted-index, k-means, self-join are slightly better than
or equal to their ideal speedups because the partial sort and
the partial reduce achieve some overlap with map disk I/O

in addition to the overlap with the shuffle, whereas ideal
considers overlap only with the shuffle. MaRCO’s
improvements for adjacency-list and binary-sort are much
less than the ideal speedups because the partial reduce in
binary-sort does not do any useful work (Table 2) and
MaRCO incurs some computational overhead in adjacency-
list which is quantified in Section 6.2. 

MaRCO-no-partial-reduce improves over Hadoop++
despite not overlapping the shuffle with partial reduce.
However, the limited overlap puts MaRCO-no-partial-
reduce behind MaRCO by a significant margin. Finally,
MaRCO-no-control performs significantly worse than
Hadoop++, illustrating the importance of our control mech-
anisms and emphasizing the point that partial reduce invo-
cation and scheduling need careful control.

6.1.2 Performance on 128-node cluster

Figure 6 shows the performance of MaRCO normalized
to that of Hadoop++ on a 128-node Amazon EC2 cluster
running a subset of our benchmarks. We keep the configu-
ration of Hadoop and MaRCO same as in Section 6.1.1.
Despite its larger size, the 128-node cluster experienced
few faults during our runs. We see that the performance
improvements for each of the shuffle-heavy benchmarks on
the 128-node cluster are close to those on the 16-node clus-
ter (Figure 5). As with our 16-node cluster, MaRCO does
not degrade the shuffle-light benchmarks’ performance on
the 128-node cluster. These results support our claim that
our small-cluster results hold for larger clusters.
(Section 5.3 and Figure 4). 

In the rest of the paper, we show detailed results on the

FIGURE 5: Performance on 16 nodes (no faults)
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16-node cluster.

6.2 Execution Time Breakdown

We explain the above improvements using a detailed
execution time breakdown of the 16-node runs. In Figure 7,
the Y-axis shows the execution times of Hadoop++ and
MaRCO normalized to that of Hadoop++ (which is shown
at 100). The X-axis shows all the shuffle-heavy MapReduc-
tions but only two shuffle-light MapReductions, namely
histogram-movies and grep due to two reasons. (1) The
shuffle-light MapReductions’ runtimes are uniformly domi-
nated by map times. (2) histogram-ratings’s and word-
count’s breakdowns resemble histogram-movies’s and clas-
sification’s is close to grep’s. The execution time is broken
up into time spent in map computation, exposed map disk I/
O, exposed part of the shuffle (both disk and network),
overhead (only for MaRCO), partial sort and partial reduce
(only for MaRCO), final sort, and final reduce. Map disk I/
O time includes only map tasks’ disk accesses and not the
shuffle’s disk accesses which are included in the shuffle
time. For Hadoop++, final sort and final reduce compo-
nents show the time spent in the original sort and original
reduce, respectively. The overhead component is the extra
computation performed by MaRCO and is the difference
between MaRCO’s partial sort + partial reduce + final sort
+ final reduce and Hadoop++’s final sort + final reduce.
Each individual component is the average across nodes. We
obtain this breakdown by modifying Hadoop’s logs to pro-
vide direct measurements of the components.

Hadoop++’s execution times for inverted-index, k-
means, adjacency-list, and self-join get more or less equal
contribution from all the components —  map, map task
disk I/O, shuffle, sort, and reduce. In term-vector, the map
times are relatively long whereas the reduce times are short
whereas it is the reverse in binary-sort. Because term-vec-
tor processes every one of the large number of words in the
input file, the map tasks are long. Because of Binary-sort’s
large data size (Table 2), the final output to the file system
increases the reduce time. Irrespective of these differences,
all the shuffle-heavy MapReductions have significant
exposed shuffle times because the map computation is not
long enough to achieve full overlap, illustrating a key point

of this paper. As mentioned before, the shuffle-light
MapReductions’ map times dwarf all other components.

MaRCO’s partial sort and partial reduce tasks overlap
with both map disk I/O and the shuffle. This overlap almost
completely hides the shuffle in most benchmarks except for
term-vector and binary-sort where partial reduce is useless
or insufficient (Table 2). However, partial sort and partial
reduce may introduce some overhead (e.g., partial reduce
may write data to the local disk to be read by the final
reduce whereas the original reduce does not make these
accesses), as mentioned in Section 3.2. The extra disk
accesses in this overhead compete with map disk I/O caus-
ing MaRCO to have some exposed map disk I/O in all the
benchmarks. Also, these accesses may also cause
MaRCO’s partial sort + partial reduce + final sort + final
reduce times to exceed Hadoop++’s final sort + final reduce
times. This excess, called the overhead, occurs in adja-
cency-list, term-vector and binary-sort. The extra disk I/O
and the overhead offset some of the overlapped shuffle
times, explaining the difference between ideal speedups
and MaRCO’s improvements (Section 6.1). 

6.3 Performance (with faults)

Because one of MapReduce’s key motivations is fault
tolerance, and because the chance of a failure during long-
running jobs in large clusters is high, showing performance
improvement in the no-fault case offers insufficient indica-
tion of actual improvements in large clusters. For example,
Google has previously reported that 57% of the runs of a
certain MapReduce-based wrapper application experienced
faults [20]. Therefore, we evaluate MaRCO’s performance
in the presence of faults. Because both 16-node and 128-
node runs experienced few faults, we simulated faults in
our 16-node cluster.

We simulate a fault by simply killing some of the
MaRCO-associated threads approximately in the middle of
a MapReduce job. For Hadoop++ 10 out of 90 map and
reduce threads (11%) were killed, and for MaRCO 10 out
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of 60 map and reduce threads (16.6%) were killed
(Section 5.2 explains why the thread counts are different).
These simulated failure rates are in line with the MapRe-
duce paper [11] which killed 200 out of 1746 threads
(11.5%). In Figure 8, we show MaRCO’s speedups over
Hadoop++ with and without faults. We include the no-fault
case from Figure 5 for comparison. We see that the faults
have little impact on MaRCO’s speedups.

6.4 Sensitivity to network Bisection Bandwidth

We study MaRCO’s performance sensitivity to the
bisection bandwidth. Using the network-utility tools tc and
iptables (Section 5.3), we varied the inter-quarter bisection
bandwidths in our 16-node cluster as 75 Mbps, 50 Mbps
(default), and 25 Mbps. These values are close to the
expected per-node bisection bandwidth available in a large
cluster (e.g., 55 Mbps in a 1800-node cluster [22]). In
Figure 9, we show MaRCO’s speedups over Hadoop++ for
these three bandwidth settings. As the bisection bandwidth
decreases, MaRCO’s opportunity increases and MaRCO’s
speedups improve, as expected. At higher bandwidths, our
control mechanisms ensure that MaRCO does not incur
slowdowns even for the shuffle-light MapReductions. 

6.5 Sensitivity to start_threshold and stop_fraction

Finally, we study MaRCO’s sensitivity to
start_threshold and stop_fraction, the parameters for our
partial reduce control mechanisms (Section 3.3). In
Figure 10, we vary start_threshold (left) as 1, 8 (default),
and 12, and stop_fraction (right) as 0.8, 0.9 (default), and
1.0 in our 16-node cluster. The Y-axis shows execution
times normalized to that of the default MaRCO. In the
interest of space, we show only three shuffle-heavy and two
shuffle-light MapReductions. We see that the default values
perform the best and that the two parameters have signifi-

cant impact on execution time. As explained in Section 3.3,
with start_threshold of 1, the partial reduce not only is less
effective but also incurs overhead as it is invoked with too
little data (just one map output) and hence not enough
tuples with the same key. With start_threshold of 12, the
partial reduce invocations are delayed causing the shuffle to
be exposed. With stop_fraction of 0.8, the partial reduce
invocations are discontinued too early (when 80% of map
output is received) causing the shuffle to be exposed; and
with stop_fraction of 1.0, the partial reduce invocations are
discontinued too late (when all the map output is received)
causing the partial reduces to extend even after the shuffle
is complete and delaying the final reduce. 

7  CONCLUSION

While MapReduce achieves some overlap between the
shuffle and the map tasks, the map computation is not long
enough to achieve full overlap with the long shuffle in shuf-
fle-heavy MapReductions. We proposed MapReduce with
communication overlap (MaRCO) to achieve nearly full
overlap via the novel idea of  including the sort and reduce
in the overlap. While MapReduce lazily performs sort and
reduce computation only after receiving all the map data,
MaRCO employs eager sort and reduce to process partial
data from some map tasks while overlapping with other
map tasks’ communication. Such overlap is a fundamental
and new tool to improve performance for the important
class of shuffle-heavy MapReductions. We implemented
MaRCO by augmenting Hadoop’s MapReduce and showed
that on a 128-node Amazon EC2 cluster MaRCO achieves
23% and 14% speedups over Hadoop on shuffle-heavy and
all MapReductions, respectively. 
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