
R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

1

Prof. R. Eigenmann

ECE563, Spring 2013

engineering.purdue.edu/~eigenman/ECE563

Programming Parallel
Machines

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

2

Parallelism - Why Bother?
 Hardware-Perspective: Parallelism is

everywhere
–  instruction level
– chip level (multicores)
– co-processors (accelerators, GPUs)
– multi-processor level
– multi-computer level
– distributed system level

Big Question: Can all this parallelism be hidden ?

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

3

Hiding Parallelism -
For Whom and Behind What?
  For the end user:

–  HPC applications: parallelism is not really apparent.
Sometimes, the user needs to tell the system on how many
“nodes” the application shall run.

–  Collaborative applications and remote resource accesses:
the user may want to see the parallelism.

  For the application programmer:
We can try to hide parallelism
–  using parallelizing compilers
–  using parallel libraries or software components
–  In reality: partially hide parallelism behind a good API

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

4

Different Forms of Parallelism
  An operating system has parallel processes to

manage the many parallel activities that are going on
concurrently.

  A high-performance computing application executes
multiple parts of the program in parallel in order to get
the job done faster.

  A bank that performs a transaction with another
banks uses parallel systems to engage multiple
distributed databases

  A multi-group research team that uses a satellite
downlink in Boston, a large computer in San-Diego
and a “Cave” for visualization at the Univ. of Illinois
needs collaborative parallel systems.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

5

How important is Parallel
Programming 2013 in Academia?

  It’s a hot topic again
–  There was significant interest in the 1980es and first half of

1990es.
–  Then the interest in parallelism declined until about 2005.
–  Increased funding for HPC and emerging multicore architectures

have made parallel programming a central topic.
  Hard problems remain:

–  what is the right user model and application programmer interface
(API) for high performance and high productivity ?

–  what are the right programming methodologies?
–  how can we build scalable hardware and software systems?
–  how can we get the user community to accept parallelism?

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

6

How important is Parallel
Programming 2013 in Industry?

  Parallelism has become a mainstream technology
–  The “multicore challenge” is one of the current big issues.
–  Industry’s presence at “Supercomputing” is growing.
–  Most large-scale computational applications exist in parallel form

(car crash, computational chemistry, airplane/flow simulations,
seismic processing, to name just a few).

–  Parallel systems sell in many shapes and forms: HPC systems for
“number crunching”, parallel servers, multi-processor PCs.

–  Students who learn about parallelism find good jobs.
  However, the hard problems pose significant challenges:

–  Lack of a good API leads to non-portable programs.
–  Lack of a programming methodology leads to high software cost.
–  Non-scalable systems limit the benefit from parallelism.
–  Lack of acceptance hinders dissemination of parallel systems.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

7

What is so Special About Parallel
Programming?

Parallel programming is hard because:
  You have to “think parallel”

–  We tend to think step-by-step, which is closer to the way a sequential
program is written.

  All algorithms have ordering constraints
–  They are a.k.a. data and control dependences, and they are difficult to

analyze and express => you need to coordinate the parallel threads using
synchronization constructs (e.g., locks)

  Deadlocks may occur.
–  Incorrectly coordinated threads may cause a program to “hang”.

  Race conditions may occur
–  Race conditions occur when dependences are violated. They lead to non-

reproducible answers of the program. Most often this is an error.
  Data partitioning, off-loading, and message generation are tedious

–  But unavoidable when programming distributed and heterogeneous
systems.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

8

So, Why Can’t We Hide
Parallelism?

  Could we reuse parallel modules?
–  Software reuse is still largely an unsolved problem
–  Parallelism encoded in reusable modules may not

be at the right level
  Parallelizing an inner loop is almost always less efficient

than an outer loop.

  Could we use parallelizing compilers?
–  Despite much progress in parallelizing compilers,

there are still many programs that fail to use such
tools, e.g.
  programs not written in Fortran77 and C
  irregular programs (e.g., using sparse data structures)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

9

Basic Methods For Creating
Parallel Programs

  Write a sequential program, then parallelize it.
–  Application-level approach: Study the physics behind the

code. Identify steps that can be executed concurrently. Re-code
these steps in parallel form.

–  Program-level approach: Analyze the program. Find code
sections that access disjoint data. Mark these sections for
parallel execution.

  Write a parallel program directly (from scratch)
–  Advantage: parallelism is not inhibited by the sequential

programming style.
–  Disadvantages:

  Large, existing applications: huge effort
  If sequential programming is difficult already, this approach

makes programming even more difficult

Our focus

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

10

Where in the Application Can
We Find Parallelism?

call A
call B
call C

parallelcall(A)
parallelcall(B)
call C
waitfor A, B

Subroutine-level parallelism Loop-level parallelism

DO i=1,n
 A(i)=B(i)
ENDDO

!$OMP PARALLEL DO
DO i=1,n
 A(i)=B(i)
ENDDO

Coarse-grain parallelism
through domain
decomposition

Instruction-level parallelism load B,R1
load A,R0
mul R1,#4.5
add R0,R1
store R1,C

C=A+4.5*B compiler

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

11

How Can We Express This
Parallelism?

new_thread(id,subr, param)

wait_thread(id)

all threads live from
the beginning to the
end of the program
or program section

thread creation
dynamic, as needed.

Parallel Threads

DO i=1,n

ENDDO

Parallel Loops

PARALLEL DO i=1,n
 call work(i)
ENDDO

PARALLEL DO i=1,n
...
ENDDO

outermost loop in program
is parallel

multiple inner
 parallel loops PARALLEL DO i=1,n

...
ENDDO

PARALLEL DO i=1,n
...
ENDDO

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

12

How Can We Express This
Parallelism?

Parallel Sections
COBEGIN
 task1
||
 task2
||
 task3
COEND

task 1, 2, and
3 are
executed
concurrently

SPMD execution

BEGIN (all in parallel)

 ...do-the-work...

END

a copy of
“do-the-work” is
executed by
each processor/
thread May be implicit

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

13

How do Parallel Tasks
Communicate?

shared-address-space,
global-address-space, or
shared-memory model:

tasks see each other’s data
(unless it is explicitly
declared as private.)

distributed-memory or
message-passing model:

tasks exchange data
through explicit
messages

...
A=3
...

...
B=A
...

shared data A

task 1 task 2

...
A=3
send(A,task2)
...

...

receive (X,task1)
B=X

...
task 1 task 2

store
load message

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

14

Generating Parallel Programs
Automatically

A quick tour through a
parallelizing compiler

The important techniques of parallelizing

compilers are also the important techniques for
manual parallelization

See ECE 663 Lecture Notes and Slides

engineering.purdue.edu/~eigenman/ECE663/Handouts

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

15

Automatic Parallelization

  The Scope of Auto-Parallelization
  Loop Parallelization 101
  Most Influential Dependence Removing

Transformations
  User’s Role in “Automatic” Parallelization
  Performance of Parallelizing Compilers

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

16

parallel
program

Where Do Parallelization Tools
Fit Into the Software Engineering

Process ?

User
inserts

Parallel
constructs or

directives

Parallelizing
compiler

inserts parallel
constructs or

directives

user
tunes

program

Source-to-source
restructurers:
•  F90 → F90/OpenMP
•  C → C/OpenMP

examples:

•  SGI F77 compiler
 (-apo -mplist option)
•  Cetus compiler

F90
F90

+
OpenMP

Source-
to-

Source
Restructurer

Source

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

17

The Basics About
Parallelizing Compilers

  Loops are the primary source of parallelism in
scientific and engineering applications.

  Compilers detect loops that have independent
iterations, I.e. iterations access disjoint data

FOR I = 1 TO n
 A[expression1] = …
 … = A[expression2]
ENDFOR

Parallelism of loops
accessing arrays:
The loop is independent if,
expression1 is different
from expression2 (for any
two different iterations)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

FOR i=1 TO 1000
…

ENDFOR

18

Parallel Loop Execution

  Fully-independent loops are executed in
parallel.

  Usually, any dependence prevents a loop
from executing in parallel.
Hence, removing dependences is very
important.

The execution of this
loop on 4 processors
may assign 250
iterations to each
processor

FOR i=1 TO 250
…

ENDFOR

FOR i=251 TO 500
…

ENDFOR

FOR i=501 TO 750
…

ENDFOR

FOR i=751 TO 1000
…

ENDFOR

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

19

Loop Parallelization 101
Data Dependence: Definition

A dependence exists between two data references if
(in a sequential execution of the program)
–  both references access the same storage location,
–  and at least one of them is a write reference.

Basic data dependence classification:
Read after Write (RAW): flow dependence true dependence

Write after Read (WAR): anti dependence false, or storage-
related dependences Write after Write (WAW): output dependence

Read after Read (RAR): input dependence not a dependence

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

20

Data Dependence Classification
Examples

TRUE / FLOW / RAW
S1: X = …
S2: … = X
value read at S2
depends on
value written at S1

ANTI / WAR
S1: … = X
S2: X = …
read at S1
must occur before
write at S2

INPUT / RAR
S1: … = X
S2: … = X
read at S1
must occur before
write at S2

OUTPUT / WAW
S1: X = …
S2: X = …
write at S2 must
occur after write
at S1 if X is read
in a later statement

(just for
completeness; RAR
is only relevant for
certain
optimizations)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

21

Automatic Parallelization
  The Scope of Auto-Parallelization
  Loop Parallelization 101
  Most Influential Dependence Removing

Transformations
  User’s Role in “Automatic” Parallelization
  Performance of Parallelizing Compilers

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

22

DO i = 1, n

work[1:n] = …
.
.
.
… = work[1:n]

ENDDO

C$OMP PARALLEL DO
C$OMP+ PRIVATE(work)

Each processor is given a separate version of the
private data, so there is no sharing conflict

Dependence-Removing
Program Transformations I:

Data Privatization
Dependency:
Elements of work
read in iteration i’
were also written
in iteration i’-1.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

23

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

scalar privatization

loop-carried
anti dependence

Privatization

!$OMP PARALLEL DO
!$OMP+PRIVATE(t)
DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

array privatization

DO j=1,n
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
ENDDO

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

24

Array Privatization
More complicated patterns for

Array Privatization
k = 5
DO j=1,n
 t(1:10) = A(j,1:10)+B(j)
 C(j,iv) = t(k)
 t(11:m) = A(j,11:m)+B(j)
 C(j,1:m) = t(1:m)
ENDDO

DO j=1,n
 IF (cond(j))
 t(1:m) = A(j,1:m)+B(j)
 C(j,1:m) = t(1:m) + t(1:m)**2
 ENDIF
 D(j,1) = t(1)
ENDDO

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

25

DO i = 1, n

…
sum = sum + A[i]
…

ENDDO

Dependence-Removing
Program Transformations II:
Reduction Recognition

Each processor will accumulate partial sums, followed
by a combination of these parts at the end of the loop.

C$OMP PARALLEL DO
C$OMP+ REDUCTION (+:sum)

Dependency:
Value of sum
written in iteration
i’-1 is read in
iteration i’.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

26

Rules for Reductions

•  reduction statements in a loop have the form
X=X ⊗ expr ,	
�	
�

•  where X is either scalar or an array expression (a[sub],
where sub must be the same on the LHS and the RHS),

•  ⊗ is a reduction operation, such as +, *, min, max

•  X must not be used in any non-reduction statement in
this loop (however, there may be multiple reduction statements
for X)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

27

Reduction Parallelization

DO j=1,n
 sum = sum + a(j)
 . . .

ENDDO

DO PARALLEL j=1,n
 ATOMIC:
 sum = sum + a(j)
 . . .

ENDDO

DO PARALLEL j=1,n
PRIVATE s=0
 s = s + a(j)
 . . .
POSTAMBLE
 ATOMIC:
 sum=sum+s

ENDDO

Preamble

Postamble

Preamble an Postamble
are executed exactly once
by all participating
threads.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

28

!$OMP PARALLEL PRIVATE(s)
s=0
!$OMP DO
DO i=1,n
 s=s+A(i)
ENDDO
!$OMP ATOMIC
sum = sum+s
!$OMP END PARALLEL

DO i=1,n
 sum = sum + A(i)
ENDDO

Reduction
Parallelization II

Remember, OpenMP has a reduction clause;
only reduction recognition is needed:
!$OMP PARALLEL DO
!$OMP+REDUCTION(+:sum)
DO i=1,n
 sum = sum + A(i)
ENDDO

DO i=1,num_proc
 s(i)=0
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(my_proc)=s(my_proc)+A(i)
ENDDO
DO i=1,num_proc
 sum=sum+s(i)
ENDDO

Scalar Reductions

Expanded
reduction
implementation

Privatized
reduction
implementation

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

29

DIMENSION sum(m),s(m)
!$OMP PARALLEL PRIVATE(s)
s(1:m)=0
!$OMP DO
DO i=1,n
 s(expr)=s(expr)+A(i)
ENDDO
!$OMP ATOMIC
sum(1:m) = sum(1:m)+s(1:m)
!$OMP END PARALLEL

DIMENSION sum(m)
DO i=1,n
 sum(expr) = sum(expr) + A(i)
ENDDO

Reduction Parallelization III
DIMENSION sum(m),s(m,#proc)
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 s(i,j)=0
ENDDO
ENDDO
!$OMP PARALLEL DO
DO i=1,n
 s(expr,my_proc)=s(expr,my_proc)+A(i)
ENDDO
!$OMP PARALLEL DO
DO i=1,m
DO j=1,#proc
 sum(i)=sum(i)+s(i,j)
ENDDO
ENDDO

Note, OpenMP 1.0 does not support such array reductions

Array Reductions (a.k.a. irregular or
histogram reductions)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

30

Performance Considerations
for Reduction Parallelization

  Parallelized reductions execute substantially more code than
their serial versions ⇒ overhead if the reduction (n) is small.

  In many cases (for large reductions) initialization and sum-up
are insignificant.

  False sharing can occur, especially in expanded reductions, if
multiple processors use adjacent array elements of the
temporary reduction array (s).

  Expanded reductions exhibit more parallelism in the sum-up
operation compared to privatized reductions.

  Potential overhead in initialization, sum-up, and memory used
for large, sparse array reductions ⇒ compression schemes can
become useful.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

31

ind = k
DO i=1,n
 ind = ind + 2
 A(ind) = B(i)
ENDDO

loop-carried
flow
dependence

Parallel DO i=1,n
 A(k+2*i) = B(i)
ENDDO

This is the simple case of an induction variable

Dependence-Removing
Program Transformations III:

Induction Variable Substitution

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

32

Generalized Induction Variables
ind=k
DO j=1,n
 ind = ind + j
 A(ind) = B(j)
ENDDO

Parallel DO j=1,n
 A(k+(j**2+j)/2) = B(j)
ENDDO

DO i=1,n
 ind1 = ind1 + 1
 ind2 = ind2 + ind1
 A(ind2) = B(i)
ENDDO

DO i=1,n
 DO j=1,i
 ind = ind + 1
 A(ind) = B(i)
 ENDDO
ENDDO

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

33

Rules for Induction Variables
  induction statements in a loop nest have the form

 iv=iv+expr or iv=iv*expr,
 where iv is an scalar integer

  expr must be loop-invariant or another induction variable (there
must not be cyclic relationships among IVs)

  iv must not be assigned in a non-induction statement

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

34

Examples of parallelizing compiler options (typically there is a large
set of options)
–  optimization levels

  optimize : simple analysis, advanced analysis, alias
analysis, data-dependence analysis, locality
enhancement, array privatization/reduction

  aggressive: data padding, data layout adjustment

–  subroutine inline expansion
  inline all, specific routines, how to deal with libraries

–  try specific optimizations
  e.g., recurrence and reduction recognition, loop fusion,

tiling

User’s Role:
Choice of Compiler Options

Will primarily increase
compilation time

Makes up for lack of
interprocedural analysis

May enhance OR degrade
performance

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

35

More About Compiler Options
–  Limits on amount of optimization:

  e.g., size of optimization data structures, number of
optimization variants tried

–  Make certain assumptions:
  e.g., array bounds are not violated, arrays are not aliased

–  Machine parameters:
  e.g., cache size, line size, mapping

–  Listing control

Compiler options can be a substitute for advanced compiler strategies.
If the compiler has limited information, the user can help out.

Compiler options are very important for the user to know.
Setting good compiler options can make a big performance difference.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

36

User Tuning:
Inspecting the Translated Program
  Source-to-source restructurers:

–  Transformed source code is the actual output
–  Example: Cetus
=> The output can be a starting point for code tuning

  Code-generating compilers:
–  Some have an option for viewing the translated

(parallel) code
–  Example: SGI f77 -apo –mplist
⇒  You may modify the source code to make it easier

for the compiler to detect parallelism

.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

37

Compiler Listings

The listing gives many useful clues for
improving the performance:
–  Loop optimization tables
–  Reports about data dependences
–  Explanations about applied transformations
–  The annotated, transformed code
–  Calling tree
–  Performance statistics

The type of reports to be included in the listing
can be set through compiler options.

Loop nest summary:
CLENMO_do#1: loop is parallel
CLENMO_do#1#1: loop is serial, because

 it contains I/O statements,
 and the following variables (may)
 have loop-carried dependences: VEC[]

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

38

Automatic Parallelization
  The Scope of Auto-Parallelization
  Loop Parallelization 101
  Most Influential Dependence Removing

Transformations
  User’s Role in “Automatic” Parallelization
  Performance of Parallelizing Compilers

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

39

Performance of
Parallelizing Compilers

0

2

4

6

8

10

BT CG EP SP FT IS LU MG

Sp
ee

du
p

Cetus OpenUH ICC PGI Rose Hand Parallel

40

Tuning
 Automatically-Parallelized

Programs

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

41

Why Would We Want toTune
Automatically-parallelized

Code?

Because
  compiler techniques are limited

E.g., array reductions are parallelized by only few compilers
  compilers may have insufficient information

E.g.,
–  loop iteration range may be input data
–  variables are defined in other subroutines (no

interprocedural analysis)
  Tuning the compiler-parallelized program is generally

easier than hand parallelizing a sequential program.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

42

Methods for Tuning
Automatically-Parallelized

Programs
  1. Tuning compiler options

–  Parallelizers have many more options than
standard compilers

  2. Changing the source program
–  so that the parallelizer can recognize more

opportunities for optimizations
  3. Manually improving the transformed code

–  This task is similar to explicit parallel
programming.

–  The parallelizer must be a source-to-source
restructurer.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

43

Tuning Parallelizer Options
 Tuning compiler options may improve

performance by 100% or more.
 Examples:

– compile for specific machine architecture
– enable/disable recurrence recognition
– padding data structures
– enable/disable tiling
– set parallelization threshold
– set degree of inlining
– strict language standard interpretation

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

44

Changing the Source Program

  Inserting directives, such as
–  explicitly parallel loops (e.g., OpenMP syntax)
–  properties of data structures (e.g., permutation array)
–  assert independence

  Modifying the source code.
Examples:
–  assigning explicit values to variables
–  removing pointers and obscure code
–  removing debug output statements

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

45

Manually Improving the
Transformed Code

  The basic method:
–  inspect the most time-consuming loops. If they are

not parallelized, find out why; then transform them
by hand.

  Remember (very important):
–  The compiler gives hints in its listing, which may

tell you where to focus attention. E.g., which
variables have data dependences.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

46

Exercise 1:
A multi-threaded “Hello world” program
  Write a multithreaded program where each thread

prints “hello world”.
#include “omp.h”
void main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

47

Exercise 2:
A multi-threaded “pi” program

  On the following slide, you’ll see a sequential
program that uses numerical integration to compute
an estimate of PI.

  Parallelize this program using OpenMP. There are
several options (do them all if you have time):

  Do it as an SPMD program using a parallel region only.
  Do it with a work sharing construct.

  Remember, you’ll need to make sure multiple
threads don’t overwrite each other’s variables.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

48

Our running Example: The PI program
Numerical Integration

∫ 4.0

(1+x2)
dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as
a sum of rectangles:

Where each rectangle has width Δx
and height F(xi) in the middle of
interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0 X 0.0

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

49

PI Program:
The sequential program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

PI Program
The OpenMP parallel version

#include <omp.h>
static long num_steps = 100000;
double step;
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
#pragma omp parallel for reduction(+:sum) private(x)

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}
OpenMP adds
2 lines of code

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

51

OpenMP PI Program:
Parallelized without a reduction clause

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] ={0.0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ double x; int i, id;

 id = omp_get_thread_num();
#pragma omp for

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

} for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

52

OpenMP PI Program:
Without the use of a worksharing (omp for)

construct => SPMD program
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum[NUM_THREADS] ={0};

 step = 1.0/(double) num_steps;

#pragma omp parallel
{ double x; int id, i;

 id = omp_get_thread_num();
 int nthreads = omp_get_num_threads();

 for (i=id;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

}
 for(i=0, pi=0.0;i<NUM_THREADS;i++) pi += sum[i] * step;

}

SPMD
Program:
Each thread
runs the same
code; the
thread ID
selects any
thread-specific
behavior.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

53

Performance Tuning
Example 1: MDG

  MDG: A Fortran code of the “Perfect Benchmarks”.
  Advanced autoparallelizers may recognize the

parallelism in this code.

0

0.5

1

1.5

2

2.5

3

3.5

original tuning step 1 tuning step 2

Performance on a
4-core machine

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

54

MDG: Tuning Steps
Step 1: Parallelize the most time-

consuming loop. It consumes 95% of the
serial execution time.
The transformations it takes to parallelize this

loop are:
–  array privatization
–  reduction parallelization

Step 2: Balancing the iteration space of this
loop.
–  Loop nest is “triangular”. Default block

partitioning would create unbalanced
assignment of iterations to processors.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

55

MDG

c1 = x(1)>0

c2 = x(1:10)>0

DO i=1,n

 DO j=i,n

 IF (c1) THEN rl(1:100) = …

 …

 IF (c2) THEN … = rl(1:100)

 sum(j) = sum(j) + …

 ENDDO

ENDDO

c1 = x(1)>0
c2 = x(1:10)>0

Allocate(xsum(n,1:#proc))

C$OMP PARALLEL DO
C$OMP+ PRIVATE (I,j,rl,id)
C$OMP+ SCHEDULE (STATIC,1)
DO i=1,n
 id = omp_get_thread_num()
 DO j=i,n

 IF (c1) THEN rl(1:100) = …

 …

 IF (c2) THEN … = rl(1:100)

 xsum(j,id) = xsum(j,id) + …

 ENDDO

ENDDO

C$OMP PARALLEL DO
DO i=1,n
 sum(i)=sum(i)+xsum(j,1:#proc)
ENDDO

Structure of the most time-
consuming loop in MDG:

Original

Parallel

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

56

ARC2D: A Fortran code of the “Perfect
Benchmarks”.

Performance Tuning
Example 2: ARC2D

0

1

2

3

4

5

6

original locality granularity

ARC2D is parallelized
very well by available
compilers. However, the
mapping of the code to
the machine could be
improved.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

57

ARC2D: Tuning Steps

  Step 1:
Loop interchanging increases cache locality through

stride-1 references
  Step 2:

Move parallel loops to outer positions
  Step 3:

Move synchronization points outward
  Step 4:

 Coalesce loops

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

58

!$OMP PARALLEL DO
!$OMP+PRIVATE(R1,R2,K,J)
 DO k = 2, kmax-1
 DO j = jlow, jup
 r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k)
 r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k)
 coef(j, k) = ABS(r1/r2)
 ENDDO
 ENDDO
!$OMP END PARALLEL

!$OMP PARALLEL DO
!$OMP+PRIVATE(R1,R2,K,J)
 DO j = jlow, jup
 DO k = 2, kmax-1
 r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k)
 r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k)
 coef(j, k) = ABS(r1/r2)
 ENDDO
 ENDDO
!$OMP END PARALLEL

ARC2D

Loop interchanging increases (spatial) cache locality

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

59

ARC2D
Increasing
parallel loop
granularity
through
NOWAIT clause

!$OMP PARALLEL
!$OMP+PRIVATE(LDI,LD2,LD1,J,LD,K)
 DO k = 2+2, ku-2, 1
!$OMP DO
 DO j = jl, ju
 ld2 = a(j, k)
 ld1 = b(j, k)+(-x(j, k-2))*ld2
 ld = c(j, k)+(-x(j, k-1))*ld1+(-y(j, k-1))*ld2
 ldi = 1./ld
 f(j, k, 1) = ldi*(f(j, k, 1)+(-f(j, k-2, 1))*ld2+(-f(j, k-1, 1))*ld1)
 f(j, k, 2) = ldi*(f(j, k, 2)+(-f(j, k-2, 2))*ld2+(-f(j,k-2, 2))*ld1)
 x(j, k) = ldi*(d(j, k)+(-y(j, k-1))*ld1)
 y(j, k) = e(j, k)*ldi
 ENDDO
!$OMP END DO
 ENDDO
!$OMP END PARALLEL

NOWAIT

Note that
•  the k-loop is executed in

sequential order and
•  all iterations that have the

same value jx are executed
by the same thread in all
iterations of the k-loop

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

60

DO j=1,m
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
ENDDO

DO i1=1,n,block
 DO j=1,m
 DO i=i1,min(i1+block-1,n)
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
 ENDDO
ENDDO

Related Technique:
Loop Blocking

Step1: Split inner loop in two (a.k.a. loop “stripmining”)
Step2: interchange outer two loops

j

i

j

i

!$OMP PARALLEL
DO j=1,m
!$OMP DO SCHEDULE(STATIC,block)
 DO i=1,n
 B(i,j)=A(i,j)+A(i,j-1)
 ENDDO
!$OMP END DO NOWAIT
ENDDO
!$OMP END PARALLEL

The same effect is
achieved like this:

Loop blocking
increases
temporal
locality

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

61

ARC2D
!$OMP PARALLEL DO
!$OMP+PRIVATE(n, k,j)
 DO n = 1, 4
 DO k = 2, kmax-1
 DO j = jlow, jup
 q(j, k, n) = q(j, k, n)+s(j, k, n)
 s(j, k, n) = s(j, k, n)*phic
 ENDDO
 ENDDO
 ENDDO
!$OMP END PARALLEL

!$OMP PARALLEL DO
!$OMP+PRIVATE(nk,n,k,j)
 DO nk = 0,4*(kmax-2)-1
 n = nk/(kmax-2) + 1
 k = MOD(nk,kmax-2)+2
 DO j = jlow, jup
 q(j, k, n) = q(j, k, n)+s(j, k, n)
 s(j, k, n) = s(j, k, n)*phic
 ENDDO
 ENDDO
!$OMP END PARALLEL

Increasing parallel loop granularity
though loop coalescing (a.k.a. loop collapsing)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

62

PARALLEL DO ij=1,n*m
 i = 1 + (ij-1) DIV m
 j = 1 + (ij-1) MOD m
 A(i,j) = B(i,j)
ENDDO

PARALLEL DO i=1,n
 DO j=1,m
 A(i,j) = B(i,j)
 ENDDO
ENDDO

loop
coalescing

Underlying Technique:
 Loop Coalescing/Collapsing

Transformation can be beneficial if
•  n is small, unknown, or variable
•  the loop body is large
•  computation is irregular

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

63

Performance Tuning Example
3: EQUAKE

EQUAKE: A C code of the SPEC OMP
2001 benchmarks.

EQUAKE is hand-
parallelized with
relatively few code
modifications. It
achieves excellent
speedup.

0
1
2
3
4
5
6
7
8

original
sequential

initial
OpenMP

improved
allocate

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

64

EQUAKE: Tuning Steps

  Step1:
Parallelizing the four most time-consuming loops

  inserted OpenMP pragmas for parallel loops and private
data

  array reduction transformation

  Step2:
A change in memory allocation

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

65

 for (i = 0; i < nodes; i++)
 while (...) {
 ...
 exp = loop-local computation;
 w[...] += exp;
 ...
 }

 /* malloc w1[numthreads][…] */

#pragma omp parallel for
 for (j = 0; j < numthreads; j++)
 for (i = 0; i < nodes; i++) { w1[j][i] = 0.0; ...; }

#pragma omp parallel private(my_cpu_id,exp,...)
{
 my_cpu_id = omp_get_thread_num();

#pragma omp for
 for (i = 0; i < nodes; i++)
 while (...) {
 ...
 exp = loop-local computation;
 w1[my_cpu_id][...] += exp;
 ...
 }
}
#pragma omp parallel for
 for (j = 0; j < numthreads; j++) {
 for (i = 0; i < nodes; i++) { w[i] += w1[j][i]; ...;}

EQUAKE

subroutine
smvp

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp)
int my_cpu_id = 1
!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO
DO j=1,npopsiz-1
 CALL ran3(1,rand,my_cpu_id,0)
 iother=j+1+DINT(DBLE(npopsiz-j)*rand)
!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF
 itemp(1:nchrome)=iparent(1:nchrome,iother)
 iparent(1:nchrome,iother)=iparent(1:nchrome,j)
 iparent(1:nchrome,j)=itemp(1:nchrome)
 temp=fitness(iother)
 fitness(iother)=fitness(j)
 fitness(j)=temp
!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF
END DO
!$OMP END DO
!$OMP END PARALLEL

Example 4:
GAFORT

subroutine
shuffle

•  Parallel shuffle
•  20,000 locks
•  Deadlock
•  Parallel random

number generation

Different executions
produce different
results =>
asynchronous
algorithm,
non-deterministic
parallelism

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp)
int my_cpu_id = 1
!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO
DO j=1,npopsiz-1
 CALL ran3(1,rand,my_cpu_id,0)
 iother=j+1+DINT(DBLE(npopsiz-j)*rand)
!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF
 itemp(1:nchrome)=iparent(1:nchrome,iother)
 iparent(1:nchrome,iother)=iparent(1:nchrome,j)
 iparent(1:nchrome,j)=itemp(1:nchrome)
 temp=fitness(iother)
 fitness(iother)=fitness(j)
 fitness(j)=temp
!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF
END DO
!$OMP END DO
!$OMP END PARALLEL

Atomic
Region

This is also referred
to as Transactional
Memory

Atomic {

}

Execution
by each
thread
appears
indivisible

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Atomic Region vs. Critical Section

AtomicRegion {
 <statements>
}

68

CriticalSection {
 <statements>
}

All processors execute
<statements> indivisibly

#threads executing
<statements> in parallel

Deterministic execution
order

Implementation complexity

✔ ✔

All, but conflicts
force serialization
or rollback

1

high low

no no

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Parallel Programming
Tools and

Methodologies

69

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

70

What Tools Did We Use for
Performance Analysis and Tuning?

  Compilers
–  the starting point for performance tuning was the

compiler-parallelized program.
–  It reports: parallelized loops, data dependences,

call graph.
  Subroutine and loop profilers

–  focusing attention on the most time-consuming
loops is absolutely essential.

  Performance “spreadsheets”:
–  typically comparing performance differences at the

loop level.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

71

Guidelines for Fixing
“Performance Bugs”

  The methodology that worked for us:
–  Use compiler-parallelized code as a starting point
–  Get loop profile and compiler listing
–  Inspect time-consuming loops (largest potential

for improvement)
  Case 1. Check for parallelism where the compiler could

not find it
  Case 2. Improve parallel loops where the speedup is

limited

Remember: we are considering a program-level approach to performance
tuning, as opposed to an application-level approach.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

72

Performance Tuning
Case 1: if the loop is not parallelized automatically, do

this:
  Check for parallelism:

–  read the compiler explanation, if available
–  a variable may be independent even if the compiler detects

dependences (compilers are conservative)
–  check if conflicting array is privatizable (e.g., compilers don’t

perform array privatization well)
–  check if the conflicting variable is a reduction or induction

variable
  If you find parallelism, add OpenMP parallel

directives, or make the information explicit for the
parallelizer

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

73

Performance Tuning
Case 2: if the loop is parallel but does not perform

well, consider several optimization factors:

Memory

CPU CPU CPU

Parallelization
overhead

High overheads are caused by:
• parallel startup cost
• small loops
• additional parallel code
• over-optimized inner loops
• less optimization for parallel code

Spreading
overhead

• load imbalance
• synchronized section
• non-stride-1 references
• many shared references

(memory bandwidth)
• low cache affinity

 (increased cache misses)

serial
program

parallel
program

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

74

Parallelization Overheads
  Parallel startup cost

–  even with efficient runtime libraries and microtasking schemes,
fork/join overheads are in the order of 1-10 µs. They are
machine-specific and may increase with the number of
processors.

–  the overhead includes the time to
  wakeup helper tasks and communicate data to them (fork), and
  the barrier synchronization at the end of the loop (join)

  Small loops
–  loops with small numbers of iterations or small bodies
–  generally, if the average execution time of a loop is less than
 0.1 ms, you cannot expect good speedup.

  How many statements execute in that time?

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

75

Parallelization Overheads continued
  Additional parallel code

–  parallel code may perform more work than the serial code
  examples: - initialization and final sum of reductions
 - parallel search may search a larger space than the
 serial equivalent

  Over-optimized inner loops
–  the compiler may parallelize a subroutine, not knowing that it

is called from within a parallel loop

  Less optimization for parallel code
–  compilers are typically more conservative when optimizing

parallel code. E.g., Sun’s OpenMP compiler uses -O3,
although -O5 is available for serial code

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

76

Spreading Overheads

  Load imbalance
–  uneven numbers of iterations

  triangular loops
  many if statements
  non-uniform memory or disk access times

–  interruptions
  other programs
  OS processes

  Synchronized section
–  even short critical sections can decrease performance

substantially
–  then there is the cost of calling synchronization primitives

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

77

Spreading Overheads continued
  Non-stride-1 references

–  this is already a problem in serial programs
–  issues in parallel programs:

  several processors read from the same cache line
 => more cache misses
  several processors write to the same cache line
 => false sharing even if the accesses go to different data

  Many shared references
–  private data can be kept in the local memory (segment)
–  bandwidth of shared memory is limited

  Low cache affinity
–  additional cache misses are incurred if processors access

different data in consecutive loops

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Profiling Techniques

  Simple timing on/off calls before/after loops
are useful.

  Optimizations often affect other program
sections as well. Be sure to monitor the
overall program execution time as well.

  Both inclusive and exclusive profiles are
useful.

  Be aware that inserted subroutine calls may
inhibit certain compiler optimizations.

78

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

MDG performance
optimization report

(see handout)

79

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

80

Performance Analysis Tool
Examples

Analyze each
Parallel region

Find serial
regions that are
hurt by
parallelism

Sort or filter
regions to
navigate to
hotspots

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

81

Performance Analysis Tool
Examples

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

82

Performance Analysis Tool
Examples

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

83

Performance Spreadsheet

Program Structure View

Performance Analysis Tool
Examples

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

84

Introductions to

 OpenMP

 MPI

(see separate slides)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

85

PI Program in MPI
static long num_steps = 100000; double step;
void main () {
 int i; double x, pi, sum =0;
 step = 1.0/(double) num_steps;
 double x; int id, i;

 MPI_Init(…);
 MPI_Comm_rank (MPI_COMM_WORLD, &id);//rank of each process
 MPI_Comm_size (MPI_COMM_WORLD, &p);//total number of processes

 for (i=id;i< num_steps; i=i+p) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 MPI_Allreduce(…sum…pi…);

 MPI_Finalize();
}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Creating and starting a new thread:
 int pthread_create (pthread_t *thread,
 const pthread_attr_t *attr,
 void * (*routine)(void*),
 void* arg)
  Returns 0 if successful, or non-zero error code.
  thread points to the ID of the newly created thread.
  attr specifies the thread attributes to be applied to the new

thread. NULL for default attributes.
  routine is the name of the function that the thread calls when

started. It takes a single parameter (arg), a pointer to void.

Introduction to Pthreads
POSIX Standard, IEEE Std 1003.1c-1995

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Introduction to Pthreads

Blocking the calling thread until the
specified thread ends:

 int pthread_join (pthread_t thread,
 void ** status);

87

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Introduction to Pthreads

More thread management functions
  pthread_self : find out own thread ID
  pthread_equal : test two thread ID for equality
  pthread_detach : set thread to release resources
  pthread_exit : exit thread without exiting the process
  pthread_cancel : terminates another thread

88

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Mutexes
int pthread_mutex_lock (pthread_mutex_t *mutex);

 locks the mutex. If already locked, blocks caller.

int pthread_mutex_trylock (pthread_mutex_t *mutex);

like mutex_lock, but no blocking if locked already

int pthread_mutex_unlock (pthread_mutex_t *mutex);

wakes 1st thread waiting on mutex

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Semaphores
  init semaphore to value:

int sem_init (int sem_t * sem, int p shared, unsigned int
value)

  increments sem. Any waiting thread will wake up:
int sem_post (int sem_t * sem)

  decrements sem. Blocks if sem is 0:
int sem_wait (int sem_t * sem)

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Data Sharing in Pthreads
  Parent and child thread share global variables
  However, it is not guaranteed that a write to a

variable is seen immediately by the other thread
  Synchronization functions make the global memory

state consistent
  For volatile variables, the compiler will generate code

that reads from/write to memory at every access.
–  BUT: the architecture may still not guarantee that the

memory state is immediately seen by the other thread.

91

Understanding memory/consistency models is an advanced topic. Whenever
possible, use programming constructs that update the memory state implicitly.
•  use OpenMP parallel and workshare constructs with implicit barriers
•  enclose shared variables with synchronization functions in Pthreads

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

92

Translating OpenMP into
(P)threads

  Most architectures do not have instructions
that support the execution of parallel loops
directly

  A compiler (an OpenMP preprocessor) must
translate the source program into a thread-
based form.

  The thread-based form of the program makes
calls to a runtime library that supports the
OpenMP execution scheme.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

93

Instructions that support direct
execution of parallel loops

1. Example architecture: Alliant FX/8 (1980es)
–  machine instruction for parallel loop
–  HW concurrency bus supports loop scheduling

a=0
DO i=1,n
 b(i) = 2
ENDDO
b=3

store #0,<a>
load <n>,D6
sub 1,D6
load &b,A1
cdoall D6
 store #2,A1(D7.r)
endcdoall
store #3,

D7 is reserved
for the loop
variable.
Starts at 0.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

94

Usual Underlying Execution Scheme
for Parallel Loops (a.k.a. Microtasking)
2. Microtasking scheme (dates back to early

IBM mainframes)

p1 p2 p3 p4
sequential

sequential

sequential

parallel

parallel

init_helper_tasks (create Pthreads)

wakeup_helpers

wakeup_helpers
sleep_helpers

sleep_helpers

microtask startup: a few µs
pthreads startup: 100 µs or more

problem:
loop startup
must be very fast

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

95

Compiler Transformation for the
Microtasking Scheme

 a=0
C$OMP PARALLEL DO
 DO i=1,n
 b(i) = 2
 ENDDO
 b=3

call init_microtasking() // once at program start
...
a=0
call loop_scheduler(loopsub,i,1,n,b)
b=3

subroutine loopsub(mytask,lb,ub,b)
DO i=lb,ub
 b(i) = 2
ENDDO
END

Master task side
 loop_scheduler:
 partition loop iterations
 wakeup
 call loopsub(...)
 barrier (all flags reset)
 return

Helper task side
 loop:
 wait for flag
 call loopsub(id,lb,ub,param)
 reset flag

Helper 1:
loopsub
 lb,ub
param

flag

shared data
Loop scheduler:

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

96

OpenMP vs MPI
lessons learned from a seismic processing applications
  MPI and OpenMP can look like opposite ends of

some programming method spectrum
  However, even here it is true that

–  it is at least as important how you use a model than what the
model is.

  Our lesson will show that you can program in MPI
style using OpenMP. In particular, the following are
myths:
–  MPI exploits outermost parallelism, OpenMP exploits inner

parallelism
–  MPI programs have good locality, OpenMP programs do not
–  MPI threads are very different from OpenMP threads

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

97

Case Study of a Large-Scale
Application

 Overview of the Application
 Basic use of MPI and OpenMP
  Issues Encountered
 Performance Results

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

98

Overview of Seismic

  Representative of modern seismic processing
programs used in the search for oil and gas.

  20,000 lines of Fortran. C subroutines
interface with the operating system.

  Available in a serial and a parallel variant.
  Parallel code is available in a message-

passing and an OpenMP form.
  Is part of the SPEC HPC benchmark suite.

–  SPEC HPC is now retired
  Includes 4 data sets: small to x-large.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

99

Seismic:
Basic Characteristics

  Program structure:
–  240 Fortran and 119 C subroutines.

  Main algorithms:
–  FFT, finite difference solvers

  Running time of Seismic (@ 500MFlops):
–  small data set: 0.1 hours
–  x-large data set: 48 hours

  IO requirement:
–  small data set: 110 MB
–  x-large data set: 93 GB

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

100

Basic Parallelization Scheme

  Split into p parallel tasks
(p = number of processors)

Program Seismic
If (rank=0) initialization

call main_subroutine()

→ SPMD execution scheme.
 Initialization done by master thread only

Program Seismic
 initialization

C$OMP PARALLEL
 call main_subroutine()
C$OMP END PARALLEL

MPI OpenMP

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

101

Synchronization and
Communication

compute

communicate

compute

communicate

MPI:
All-to-all send/receive

OpenMP:
copy to shared buffer;
barrier_synchronization;
copy from shared buffer;

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

102

Issues:
Mixing Fortran and C

  Bulk of computation is done
in Fortran

  Utility routines are in C:
–  IO operations
–  data partitioning routines
–  communication/synchronization

operations
  OpenMP-related issues:

–  IF C/OpenMP compiler is not
available, data privatization
must be done through
“expansion”.

–  Mix of Fortran and C is
implementation dependent

Data privatization in OpenMP/C
#pragma omp thread private (item)
float item;
void x(){
 ... = item;
}

Data expansion in
absence a of OpenMP/C compiler
float item[num_proc];
void x(){
 int thread;
 thread = omp_get_thread_num_();
 ... = item[thread];
}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

103

Broadcast Common Blocks
common /cc/ cdata
common /dd/ ddata
C initialization:
IF (rank=0)
 cdata = ...
 ddata = ...
ENDIF

C copy common blocks:
call syspcom ()

call main_subroutine()

OpenMP issue: At the start of the parallel region it is not yet known
which common blocks need to be copied in.

Solution: copy-in all common blocks => overhead

common /cc/ cdata
common /dd/ ddata
#pragma OMP threadprivate /cc/,/dd/
c initialization
 cdata = ...
 ddata = ...

C$OMP PARALLEL
C$OMP+COPYIN(/cc/, /dd/)
 call main_subroutine()
C$END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

104

OpenMP Issues:
Multithreading IO and malloc

IO routines and memory allocation are called within
parallel threads, inside C utility routines.

  OpenMP requires all standard libraries and intrinsics
to be thread-save. However the implementations are
not always compliant.
 → system-dependent solutions need to be found

  The same issue arises if standard C routines are
called inside a parallel Fortran region or in non-
standard syntax.
 Standard C compilers do not know anything about OpenMP

and the thread safety requirement.

Note, this is not an issue in MPI

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

105

More OpenMP Issues:
Processor Affinity

  OpenMP currently does not specify or provide
constructs for controlling the binding of threads to
processors.

  Processors can migrate, causing overhead. This
behavior is system-dependent.
System-dependent solutions may be available.

parallel
region tasks may migrate as a result of

an OS event

task1
task2
task3
task4

p1 2 3 4

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

106

Performance Results

0

1

2

3

4

5

6

7

1 proc 2 proc 4 proc 8 proc

PVM
OpenMP

0

1

2

3

4

5

6

1 proc 2 proc 4 proc 8 proc

PVM
OpenMP

small data set medium data set

Speedups of Seismic on an 8-processor system

MPI

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Programming Vector
Architectures

EE663, Spring 2012 Slide 107

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Vector Instructions

A vector instruction operates on a number of
data elements at once.
Example: vadd va,vb,vc,32
vector operation of length 32 on vector registers va,vb, and vc
–  va,vb,vc can be

  Special cpu registers or memory → classical
supercomputers

  Regular registers, subdivided into shorter partitions (e.g.,
64bit register split 8-way) → multi-media extensions

–  The operations on the different vector elements
can overlap → vector pipelining

EE663, Spring 2012 Slide 108

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Applications of Vector
Operations

  Science/engineering applications are typically
regular with large loop iteration counts.
This was ideal for classical supercomputers, which

had long vectors (up to 256; vector pipeline startup
was costly).

  Graphics applications can exploit “multi-
media” register features and instruction sets.

EE663, Spring 2012 Slide 109

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

A(1:n)=B(1:n)+C(1:n)

Basic Vector Transformation

DO i=1,n
 A(i) = B(i)+C(i)
 C(i-1) = D(i)**2
ENDDO

A(1:n)=B(1:n)+C(1:n)
C(0:n-1)=D(1:n)**2

Here, the triplet notation means vector operation. Notice that
this is not necessarily the same meaning as the array notation
supported by some languages.

EE663, Spring 2012 Slide 110

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

111

DO i=1,n
 A(i) = B(i)+C(i)
 D(i) = A(i)+A(i-1)
ENDDO

DO i=1,n
 A(i) = B(i)+C(i)
ENDDO

DO i=1,n
 D(i) = A(i)+A(i-1)
ENDDO

A(1:n)=B(1:n)+C(1:n)
D(1:n)=A(1:n)+A(0:n-1)

dependence

loop
distribution

vectorization

Distribution and Vectorization
The transformation done on the previous slide involves loop distribution.
Loop distribution reorders computation and is thus subject to data
dependence constraints.

The transformation is not legal if there is
a lexical-backward dependence:

DO i=1,n
 A(i) = B(i)+C(i)
 C(i+1) = D(i)**2
ENDDO

loop-carried
dependence Statement reordering may help

resolve the problem. However,
this is not possible if there is a
dependence cycle.

Slide 111

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Vectorization Needs
Expansion

... as opposed to privatization

DO i=1,n
 t = A(i)+B(i)
 C(i) = t + t**2
ENDDO

DO i=1,n
 T(i) = A(i)+B(i)
 C(i) = T(i) + T(i)**2
ENDDO

expansion

T(1:n) = A(1:n)+B(1:n)
C(1:n) = T(1:n)+T(1:n)**2

vectorization

EE663, Spring 2012 Slide 112

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

DO i=1,n
 IF (A(i) < 0) A(i)=-A(i)
ENDDO

WHERE (A(1:n) < 0) A(1:n)=-A(1:n)

conditional vectorization

Conditional Vectorization

EE663, Spring 2012 Slide 113

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

DO i=1,n
 A(i) = B(i)
ENDDO

DO i1=1,n,32
 DO i=i1,min(i1+31,n)
 A(i) = B(i)
 ENDDO
ENDDO

stripmining

Stripmining for Vectorization

EE663, Spring 2012 Slide 114

Stripmining turns a single loop into a doubly-nested loop for
two-level parallelism. It also needs to be done by the code-
generating compiler to split an operation into chunks of the
available vector length.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Programming Accelerators

EE663, Spring 2012 Slide 115

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Examples of Accelerators

116

Intel MIC
(Xeon Phi)

Nvidia
GPGPU

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Why Accelerators?

At a high level,
special-purpose architectures can execute
certain program patterns faster or with less
energy than general-purpose CPUs.

Examples:
– vector machines
– GRAPE (molecular-dynamics processor)
– DSP
– FPGA 117

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Why Accelerators?
More specifically
  Heterogeneity as an opportunity

1 fat processor for sequential code
+ many lean cores for highly parallel code

  Tradeoff: fat core/large cache versus many of them

  GPUs exist anyway, use them for computation as well
  Energy argument
  high bandwidth AND low (effective) latency for certain

access patterns

118

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Accelerators Today
  GPGPUs have accelerated many applications
  Performance varies widely
  Emphasis is on science/engineering applications
  Fastest supercomputers use GPGPUs
  Nvidia GPGPUs dominate

–  key architecture features: SIMD and multithreading
  Intel’s LRB did not become a product. However, MIC

(Xeon Phi) has just entered the market.
  Programming productivity is poor

–  programmer needs to understand complex architecture
–  new programming constructs and techniques 119

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

CUDA Architecture

120

CPU GPU

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Programming Models

 History:
–  Explicit offloading and optimization: CUDA,

OpenCL, OpenACC
  Pure Shared Memory model:

–  Compiler performs the translation (OpenMP
research compiler)

  Shared Memory plus directives:
–  OpenACC, OpenMP 4.0, OpenMP (research

compiler)

121

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Important Accelerator
Programming Techniques

  defining kernels for offloading
  creating coalesced accesses (loop interchange,

coalescing, data transpose)
–  this is the most-important optimization (note, this was

true for vector machines as well)
  managing copy-in/out
  data placement in accelerator memory hierarchy
  defining thread block size

122

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Programming Complexity
Comparison (Jacobi)

OpenMP code

float a[SIZE_2][SIZE_2];
float b[SIZE_2][SIZE_2];
int main (int argc, char *argv[]) {
 int i, j, k;
 for (k = 0; k < ITER; k++) {
 #pragma omp parallel for private(i, j)
 for (i = 1; i <= SIZE; i++)
 for (j = 1; j <= SIZE; j++)
 a[i][j] = (b[i - 1][j] + b[i + 1][j] + b[i][j - 1] + b[i][j + 1]) / 4.0f;
 #pragma omp parallel for private(i, j)
 for (i = 1; i <= SIZE; i++)
 for (j = 1; j <= SIZE; j++)
 b[i][j] = a[i][j];
 return 0;
}

CUDA code

float a[SIZE_2][SIZE_2]; float b[SIZE_2][SIZE_2];
__global__ void main_kernel0(float a[SIZE_2][SIZE_2], float b[SIZE_2][SIZE_2]) {
 int i,j; int _bid = (blockIdx.x+(blockIdx.y*gridDim.x)); int _gtid = (threadIdx.x+(_bid*blockDim.x));
 i=(_gtid+1);
 if (i<=SIZE {
 for (j=1; j<=SIZE j ++)
 a[i][j]=(b[(i-1)][j]+b[(i+1)][j]+b[i][(j-1)]+b[i][(j+1)])/4.0F;
 }
}
__global__ void main_kernel1(float a[SIZE_2][SIZE_2], float b[SIZE_2][SIZE_2]) {
 int i,j; int _bid = (blockIdx.x+(blockIdx.y*gridDim.x)); int _gtid = (threadIdx.x+(_bid*blockDim.x));
 i=(_gtid+1);
 if (i<=SIZE {
 for (j=1; j<=SIZE j ++)
 b[i][j]=a[i][j];
 }
}
int main(int argc, char * argv[]) {
 int i,j,k; float * gpu__a; float * gpu__b;
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMalloc(((void * *)(& gpu__a)), gpuBytes));
 dim3 dimBlock0(BLOCK_SIZE, 1, 1); dim3 dimGrid0(NUM_BLOCKS, 1, 1);
 CUDA_SAFE_CALL(cudaMemcpy(gpu__a, a, gpuBytes, cudaMemcpyHostToDevice));
 gpuBytes=((SIZE_2*SIZE_2)*sizeof (float));
 CUDA_SAFE_CALL(cudaMalloc(((void * *)(& gpu__b)), gpuBytes));
 CUDA_SAFE_CALL(cudaMemcpy(gpu__b, b, gpuBytes, cudaMemcpyHostToDevice));
 dim3 dimBlock1(BLOCK_SIZE, 1, 1); dim3 dimGrid1(NUM_BLOCKS, 1, 1);
 for (k=0; k<ITER; k ++) {
 main_kernel0<<<dimGrid0, dimBlock0, 0, 0>>>((float (*)[SIZE_2])gpu__a, (float (*)[SIZE_2])gpu__b);
 main_kernel1<<<dimGrid1, dimBlock1, 0, 0>>>((float (*)[SIZE_2)])gpu__a, (float (*)[SIZE_2])gpu__b);
 }
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMemcpy(b, gpu__b, gpuBytes, cudaMemcpyDeviceToHost));
 CUDA_SAFE_CALL(cudaFree(gpu__b));
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMemcpy(a, gpu__a, gpuBytes, cudaMemcpyDeviceToHost));
 CUDA_SAFE_CALL(cudaFree(gpu__a));
 fflush(stdout); fflush(stderr); return 0;
}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

OpenMP Version of Jacobi
float a[SIZE_2][SIZE_2];
float b[SIZE_2][SIZE_2];
int main (int argc, char *argv[]) {
 int i, j, k;
 for (k = 0; k < ITER; k++) {
 #pragma omp parallel for private(i, j)
 for (i = 1; i <= SIZE; i++)
 for (j = 1; j <= SIZE; j++)
 a[i][j] = (b[i - 1][j] + b[i + 1][j] + b[i][j - 1] + b[i][j + 1]) / 4.0f;
 #pragma omp parallel for private(i, j)
 for (i = 1; i <= SIZE; i++)
 for (j = 1; j <= SIZE; j++)
 b[i][j] = a[i][j];
 return 0;
}

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

CUDA Version of Jacobi

int main(int argc, char * argv[]) {
 int i,j,k; float * gpu__a; float * gpu__b;
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMalloc(((void * *)(& gpu__a)), gpuBytes));
 CUDA_SAFE_CALL(cudaMemcpy(gpu__a, a, gpuBytes, cudaMemcpyHostToDevice));
 gpuBytes=((SIZE_2*SIZE_2)*sizeof (float));
 CUDA_SAFE_CALL(cudaMalloc(((void * *)(& gpu__b)), gpuBytes));
 CUDA_SAFE_CALL(cudaMemcpy(gpu__b, b, gpuBytes, cudaMemcpyHostToDevice));
 dim3 dimBlock0(BLOCK_SIZE, 1, 1); dim3 dimGrid0(NUM_BLOCKS, 1, 1);
 dim3 dimBlock1(BLOCK_SIZE, 1, 1); dim3 dimGrid1(NUM_BLOCKS, 1, 1);
 for (k=0; k<ITER; k ++) {
 main_kernel0<<<dimGrid0, dimBlock0, 0, 0>>>((float (*)[SIZE_2])gpu__a,
 (float (*)[SIZE_2])gpu__b);
 main_kernel1<<<dimGrid1, dimBlock1, 0, 0>>>((float (*)[SIZE_2)])gpu__a,
 (float (*)[SIZE_2])gpu__b);
 }
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMemcpy(b, gpu__b, gpuBytes, cudaMemcpyDeviceToHost));
 gpuBytes=(SIZE_2*SIZE_2)*sizeof (float);
 CUDA_SAFE_CALL(cudaMemcpy(a, gpu__a, gpuBytes, cudaMemcpyDeviceToHost));
 CUDA_SAFE_CALL(cudaFree(gpu__b));
 CUDA_SAFE_CALL(cudaFree(gpu__a));
 fflush(stdout); fflush(stderr); return 0;
}

GPU Memory Allocation and Data Transfer to GPU

Data Transfer Back To CPU and GPU Memory Deallocation

GPU Kernel Execution

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Intra-Thread vs. Inter-Thread
Locality

  Intra-thread locality is beneficial to both OpenMP and CUDA model.
  Inter-thread locality plays a critical role in CUDA model.

Thread 0 Thread 1

Cache 0 Cache 1

0 4 8 12 16 20
Global Memory

Thread 0 Thread 1 Thread 2 Thread 3

0 4 8 12 16 20 24 28 32
Global Memory

False –sharing Coalesced global memory access
reduces overall latency

Common CPU Memory Model CUDA Memory Model

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:
Parallel Loop-Swap

#pragma omp parallel for
for(i=0; i< N; i++)
 for(k=0; k<N; k++)
 A[i][k] = B[i][k];
Input OpenMP code

#pragma omp parallel for

schedule(static, 1)
for(k=0; k<N; k++)
 for(i=0; i<N; i++)
 A[i][k] = B[i][k];
Optimized OpenMP code

T0

i

k

T1
T2
T3

Thread ID

Global Memory

Memory access at time t

T0

i

T1 T2 T3 Thread ID

Global Memory

k

Memory
access
at time t

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:
Loop Collapsing

#pragma omp parallel for
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
 Input OpenMP code

#pragma omp parallel
#pragma omp for collapse(2)

schedule(static, 1)
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
Optimized OpenMP code

T0
T1
T2
T3

Thread ID

i

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7

Global Memory

Global Memory

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:
Loop Collapsing

#pragma omp parallel for
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
 Input OpenMP code

#pragma omp parallel
#pragma omp for collapse(2)

schedule(static, 1)
for(i=0; i<n_rows; i++)
 for(k=rptr[i]; k<rptr[i+1]; k++)
 w[i] += A[k]*p[col[k]];
Optimized OpenMP code

T0
T1
T2
T3

Thread ID

i

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7

Global Memory

Global Memory

// Collapsed loop

If(tid1 < rptr[n_rows])

 l_w[tid1] = A[tid1]*p[col[tid1]];

// Reduction loop

If(tid2 < n_rows)

 for(k=rptr[tid2]; k<rptr[tid2+1]; k++)

 w[tid2] += l_w[k];

(c) GPU code

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:

Matrix-Transpose

#pragma omp parallel for
 schedule(static, 1)
 transpose(A)1

for(i=0; i< N; i++) {
 for(k=0; k<M; k++)
 … = A[i,k];
}

1OpenMP standard does not include a transpose directive

T0

i

k

T1
T2
T3

Thread ID

Global Memory

Memory access at time t

T0

i

T1 T2 T3 Thread ID

Global Memory

k

Memory
access
at time t

A

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:

Managing Copy-in/out
1.  Eliminate copy-out of data that are not live out
2.  Leave data that is needed in future kernel

invocations in the device memory
–  eliminate copy-out if not needed on the CPU side

3.  Narrow the copy-in data range to the minimum
needed

4.  Copy-in early (overlap copy-in with execution of
previous kernel)

5.  Pipeline copy-in and execution within same kernel.

Note that techniques 2,4,5 increase the demand on device memory
131

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Choosing a threadblock size <max may be preferable.
  Shared resources: fewer threads incur fewer resource conflicts
  Multithreading: If a thread (block) stalls on a memory transfer, a

different thread (block) becomes active.

132

Effective GPGPU Programming Techniques:

Setting Thread Block Size

data access 3t

computation t

thread
≥3 thread blocks are needed, in
this example, to overcome the
memory latency

for i=1,n
 … = a[i]

there can be max n (logical)
threads, however:

Note that different vendors use the terms thread and block differently

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Effective GPGPU Programming Techniques:
Memory Management

 Accelerators may not provide virtual
memory management

 Blocking/stripmining may be needed to
fit data within available memory space

 Side benefit of blocking:

133

overlapping copy-in/out
and computation

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

134

SMP Programming Errors

 Shared memory parallel programming is
a mixed bag:
–  It saves the programmer from having to

map data onto multiple processors. In this
sense, its much easier.

–  It opens up a range of new errors coming
from unanticipated shared resource
conflicts.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

135

2 major SMP errors

 Race Conditions
 The outcome of a program depends on the

detailed timing of the threads in the team.

 Deadlock
 Threads lock up waiting on a locked resource

that will never become free.

 Livelock
 A termination condition is never reached

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

136

Race Conditions
  The result varies

unpredictably based on
detailed order of
execution for each
section.

  Wrong answers
produced without
warning!

C$OMP PARALLEL SECTIONS
 A = B + C
C$OMP SECTION
 B = A + C
C$OMP SECTION
 C = B + A
C$OMP END PARALLEL SECTIONS

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

137

Race Conditions:
A complicated (silly?) solution

  In this example, we
choose the
assignments to occur
in the order A, B, C.
–  ICOUNT forces this

order.
–  FLUSH so each thread

sees updates to
ICOUNT - NOTE: you
need the flush on each
read and each write.

 ICOUNT = 0
C$OMP PARALLEL SECTIONS
 A = B + C
 ICOUNT = 1
C$OMP FLUSH ICOUNT
C$OMP SECTION
1000 CONTINUE
C$OMP FLUSH ICOUNT
 IF(ICOUNT .LT. 1) GO TO 1000
 B = A + C
 ICOUNT = 2
C$OMP FLUSH ICOUNT
C$OMP SECTION
2000 CONTINUE
C$OMP FLUSH ICOUNT
 IF(ICOUNT .LT. 2) GO TO 2000
 C = B + A
C$OMP END PARALLEL SECTIONS

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

138

A More Subtile Race Condition
  The result varies

unpredictably because
access to shared
variable TMP is not
protected.

  Wrong answers
produced without
warning!

  The user probably
wanted to make TMP
private.

C$OMP PARALLEL SHARED (X)
C$OMP& PRIVATE(ID)

C$OMP PARALLEL DO REDUCTION(+:X)
 DO 100 I=1,100
 TMP = WORK(I)
 X = X + TMP
100   CONTINUE
C$OMP END DO

C$OMP END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

139

Avoiding Race Conditions
  Easiest solution: don’t access any variable that is

written by another parallel thread.
–  this is always the case for fully parallel loops

  More complicated: if data dependences are
unavoidable, synchronize them properly.
–  Be aware that you reduce the performance

  Avoid: creating your own synchronization by “waiting
for a flag set by the other thread”.
–  use provided synchronization primitives instead

  (Desirable) race conditions seen in real programs:
–  parallel shuffle
–  parallel search

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

140

Deadlock
  If A is locked in the first

section and the if statement
branches around the unset
lock, threads running the
other sections deadlock
waiting for the lock to be
released.

  Make sure you release your
locks. Always, even in error
situations!

 CALL OMP_INIT_LOCK (LCKA)
C$OMP PARALLEL SECTIONS
C$OMP SECTION
 CALL OMP_SET_LOCK(LCKA)
 IVAL = DOWORK()
 IF (IVAL .GT. TOL) THEN
 CALL ERROR (IVAL)
 ELSE
 CALL OMP_UNSET_LOCK (LCKA)
 ENDIF
ENDIF
C$OMP SECTION
 CALL OMP_SET_LOCK(LCKA)
 CALL USE_B_and_A (RES)
 CALL OMP_UNSET_LOCK(LCKA)
C$OMP END SECTIONS

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Livelock
  This shows a race

condition and a livelock.
  If the square of RES is

never smaller than TOL,
the program spins
endlessly in Livelock.

C$OMP PARALLEL PRIVATE(ID)
 ID = OMP_GET_THREAD_NUM()
 N = OMP_GET_NUM_THREADS()
1000 CONTINUE
 PHASES[ID] = UPDATE(U, ID)
C$OMP SINGLE
 RES = MATCH (PHASES, N)
C$OMP END SINGLE
 IF (RES*RES .LT. TOL) GO TO 2000
 GO TO 1000
2000 CONTINUE
C$OMP END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Livelock
  Solution:

–  Fix the race with a barrier
before the single. This
may fix the MATCH
operation and fix the
livelock error.

–  Decide on a maximum
number of iterations, and
use a loop with that
number rather than an
infinite loop.

 ICOUNT = 0
C$OMP PARALLEL PRIVATE (ID)
 ID = OMP_GET_THREAD_NUM()
 N = OMP_GET_NUM_THREADS()
1000 CONTINUE
 PHASES[ID] = UPDATE(U, ID)
C$OMP BARRIER
C$OMP SINGLE
 RES = MATCH (PHASES, N)
 ICOUNT = ICOUNT + 1
C$OMP END SINGLE
 IF (RES*RES .LT. TOL) GO TO 2000
 IF (ICOUNT .GT. MAX) GO TO 2000
 GO TO 1000
2000 CONTINUE
C$OMP END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

143

SMP (OpenMP) Error Advice

  Are you using threadsafe libraries?
  I/O inside a parallel region can interleave

unpredictably.
  Make sure you understand what your

constructors are doing with private objects.
  Watch for private variables masking globals.
  Understand when shared memory is

coherent. When in doubt, use FLUSH.
  NOWAIT removes implied barriers.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

144

Navigating through the Danger
Zones

 Option 1: Analyze your code to make
sure every semantically permitted
interleaving of the threads yields the
correct results.
– This can be prohibitively difficult due to the

explosion of possible interleavings.
– Tools like Intel’s Thread Checker (Assure)

can help.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

145

Navigating through the
Danger Zones

 Option 2: Write SMP code that is
portable and equivalent to the
sequential form.
– Use a safe subset of OpenMP.
– Follow a set of “rules” for Sequential

Equivalence.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

146

Portable Sequential
Equivalence

 What is Portable Sequential
Equivalence (PSE)?

 A program is sequentially equivalent if its
results are the same with one thread and many
threads.

 For a program to be portable (i.e. runs the
same on different platforms/compilers) it must
execute identically when the OpenMP
constructs are used or ignored.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

147

Portable Sequential
Equivalence

 Advantages of PSE
 A PSE program can run on a wide range of

hardware and with different compilers -
minimizes software development costs.

 A PSE program can be tested and debugged in
serial mode with off-the-shelf tools - even if
they don’t support OpenMP.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

148

2 Forms of Sequential
Equivalence

 Two forms of Sequential equivalence
based on what you mean by the phrase
“equivalent to the single threaded
execution”:

 Strong SE: bitwise identical results.
 Weak SE: equivalent mathematically but due

to quirks of floating point arithmetic, not bitwise
identical.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

149

Strong Sequential Equivalence:
Rules

– Control data scope with the base language
 Avoid the data scope clauses, except…
 Only use private for scratch variables local to a

block (e.g. temporaries or loop control variables)
whose global initialization don’t matter.

– Locate all cases where a shared variable
written by one thread is accessesd (read or
written) by another threads.
 All accesses to the variable must be protected.
  If multiple threads combine results into a single

value, enforce sequential order.
 Do not use the reduction clause.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

150

Strong Sequential
Equivalence: example

  Everything is shared except
I and TMP. These can be
private since they are not
initialized and they are
unused outside the loop.

  The summation into RES
occurs in the sequential
order so the result from the
program is bitwise
compatible with the
sequential program.

  Problem: Can be inefficient
if threads finish in an order
that’s greatly different from
the sequential order.

C$OMP PARALLEL PRIVATE(I, TMP)

C$OMP DO ORDERED
 DO 100 I=1,NDIM
 TMP =ALG_KERNEL(I)
C$OMP ORDERED
 CALL COMBINE (TMP, RES)
C$OMP END ORDERED
100 CONTINUE

C$OMP END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

151

Weak Sequential equivalence
  For weak sequential equivalence only mathematically

valid constraints are enforced.
  Computer floating point arithmetic is not associative and not

commutative.
  In most cases, no particular grouping of floating point

operations is mathematically preferred so why take a
performance hit by forcing the sequential order?

–  In most cases, if you need a particular grouping of floating
point operations, you have a bad algorithm.

  How do you write a program that is portable and
satisfies weak sequential equivalence?
–  Follow the same rules as the strong case, but relax

sequential ordering constraints.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

152

Weak equivalence: example
C$OMP PARALLEL PRIVATE(I, TMP)
C$OMP DO
 DO 100 I=1,NDIM
 TMP =ALG_KERNEL(I)
C$OMP CRITICAL
 CALL COMBINE (TMP, RES)
C$OMP END CRITICAL
100 CONTINUE

C$OMP END PARALLEL

  The summation into
RES occurs one thread
at a time, but in any
order so the result is not
bitwise compatible with
the sequential program.

  Much more efficient, but
some users get upset
when low order bits vary
between program runs.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

153

Sequential Equivalence isn’t a Silver
Bullet

  This program follows
the weak PSE rules, but
its still wrong.

  In this example, RAND()
may not be thread safe.
Even if it is, the pseudo-
random sequences
might overlap thereby
throwing off the basic
statistics.

C$OMP PARALLEL
C$OMP& PRIVATE(I, ID, TMP, RVAL)
 ID = OMP_GET_THREAD_NUM()
 N = OMP_GET_NUM_THREADS()
 RVAL = RAND (ID)
C$OMP DO
 DO 100 I=1,NDIM
 RVAL = RAND (RVAL)
 TMP =RAND_ALG_KERNEL(RVAL)
C$OMP CRITICAL
 CALL COMBINE (TMP, RES)
C$OMP END CRITICAL
100 CONTINUE
C$OMP END PARALLEL

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Map Reduce

 Wikipedia:
MapReduce is
–  a programming model for processing large data sets, and
–  the name of an implementation of the model by Google.
MapReduce is typically used to do distributed computing on
clusters of computers.

MapReduce libraries have been written in many
programming languages. A popular, free implementation is
Apache Hadoop.

154

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Why MapReduce?
“MapReduce provides regular programmers the ability
to produce parallel distributed programs much more
easily, by requiring them to write only the simpler Map()
and Reduce() functions, which focus on the logic of the
specific problem at hand”

However,
you need to have a good understanding how map,
reduce, and the overall system interact.

Many problems can be expressed as such a two-step
algorithm

155

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Map step
“The master node takes the input, divides it into smaller sub-
problems, and distributes them to worker nodes. A worker node
may do this again in turn, leading to a multi-level tree structure. The
worker node processes the smaller problem, and passes the
answer back to its master node.”

–  Map is performed fully parallel on each subproblem

156

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Reduce step
“ The master node then collects the answers to all the sub-
problems and combines them in some way to form the output – the
answer to the problem it was originally trying to solve.”

–  Reduce is not fully parallel, but may be expressed as a sequence of
parallel combine steps.

157

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

A Simple Example:
Parallel Reduction Expressed as

MapReduce

158

  Problem: sum all n elements an an array
  Master: splits array into #processor parts; calls map

for each processor
  Map: sums all elements or the assigned array part;

returns partial sum
  Reduce: receives partial sums; returns their sum

Processors can assume the role of Master (e.g. if the
assigned part is larger than a threshold) and engage
additional processors, in turn.

=> leads to a combining tree for the summation.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

A 5-step Process
1.  Prepare the Map() input – the "MapReduce system" designates Map

processors, assigns the K1 input key value each processor would work
on, and provides that processor with all the input data associated with
that key value.

2.  Run the user-provided Map() code – Map() is run exactly once for each
K1 key value, generating output organized by key values K2.

3.  "Shuffle" the Map output to the Reduce processors – the MapReduce
system designates Reduce processors, assigns the K2 key value each
processor would work on, and provides that processor with all the Map-
generated data associated with that key value.

4.  Run the user-provided Reduce() code – Reduce() is run exactly once
for each K2 key value produced by the Map step.

5.  Produce the final output – the MapReduce system collects all the
Reduce output, and sorts it by K2 to produce the final outcome.

159

MAP

REDUCE

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

function Map(String name, String document):
 count each word in the document
 return the map < word, #occurrences >

160

function Reduce(String word, List #occurrences):

 sum = Σ #occurrences
 return < word, sum >

•  Map returns multiple results, each annotated with a key. In
our example, the key identifies a specific word.

•  The shuffle function combines the values (#occurrences)
for each key returned by a map function into a list and calls
Reduce(key,list)
•  shuffle can take a substantial amount of time. It is

implemented by the system; the user only needs to
write Map and Reduce.

list

A More Advanced Example:
Word Count

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Other MapReduce Problems/
Applications

  searching
  sorting
  web link-graph reversal
  web access log stats
  inverted index construction
  document clustering
  machine learning
  statistical machine translation

MapReduce has also been demonstrated on some linear algebra
problems, such as matrix multiply

“Basically wherever you see linear algebra (matrix/vector operations) you can
apply Map Reduce”

161

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

OTHER PROGRAMMING
MODELS, LANGUAGES,
CONCEPTS

162

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Data Flow
Parallelism is derived from the availability of data in a data
flow graph.
  Joule (1996):

–  Concurrent dataflow programming language for building
distributed applications. The order of statements within a block is
irrelevant to the operation of th eblock. Statements are executed
whenever possible, based on their inputs. Everything in Joule
happens by sending messages. There is no control flow. Instead,
the programmer describes the flow of data, making it a data flow
programming language.

  SISAL (1993):
–  Uses and implements single-assignment concepts. Produces a

data flow graph. (Single assignment removes anti and output
dependences, which exposes maximum parallelism)

  StarS (2009):
–  Hierarchical task-based programming with StarSs, Badia, Ayguade,

Labarta (2009) 163

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Global Address Space
Languages (GAS)

  UPC, co-array Fortran, HPF
  Languages for distributed-memory machines
  The user sees a shared address space
  There are constructs for data distribution.

They can be explicit, user-provided data-
distribution directives or array dimensions that
indicate the processor ID.

  Compilers translate the GAS program into a
message-passing form.

164

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Non-Blocking Operations

  Fundamental mechanism for overlapping
communication and (multiple) operations.

  If b is a simple value, this is essentially the
same as prefetch

  If b is an operation, this involves the
spawning of a parallel task

165

a := b
…
synch()

the computation of the value b and transfer to a
is initiated, and completed at the synch() point. It
overlaps with the execution of the “…”
statements.

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

CSP – Communicating Sequential
Processes (Hoare, 1978)

 one of the earliest concepts for
expressing parallel activities

 center is the process
  synchronization and communication

constructs are very important
–  semaphores, monitors, locks, etc.

 OCCAM/Transputer

166

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

BSP – Block Synchronous
Parallelism

 Structuring a parallel computation into
phases of full parallelism followed by
communcation phases.

167

time
compute

communicate

compute

communicate

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Parallel models differ in the primary
concerns they require the user to deal with

  data flow: focus on needed and produced
data by activities

  control flow: how control flows and transfers
–  focus on starting and ending parallel activities

  control transfer: focus on how cpu resources
are assigned to activities

  messaging: focus on communication (and
implied synchronization) between parallel
activities

168

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

High-level Problem Classes

  Fixed problem to be solved in shortest
possible time.
–  HPC applications

  On-demand services to be made available on
a continual basis.
–  Operating systems, internet services

  Continuous data streams to be processed.
–  Image processing

169

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Wikipedia:
Concurrent and parallel programming languages

  Actor Model
  Coordination Languages
  CSP-based
  Dataflow
  Distributed Event-driven and hardware description
  Functional
  GPU languages
  Locic programming
  Multi-threaded
  Object oriented
  PGAS
  Unsorted

170

R. Eigenmann, Programming Parallel Machines ECE 563 Spring 2013

Wikipedia:
Parallel programming models

  Process interaction
  Shared memory
  Message passing
  Implicit parallelism
  Problem decomposition
  Task parallelism
  Data parallelism

171

