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Parallelism - Why Bother? 
 Hardware-Perspective: Parallelism is 

everywhere 
–  instruction level 
– chip level (multicores) 
– co-processors (accelerators, GPUs) 
– multi-processor level 
– multi-computer level 
– distributed system level 

Big Question: Can all this parallelism be hidden ?  
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Hiding Parallelism -  
For Whom and Behind What? 
  For the end user: 

–  HPC applications: parallelism is not really apparent. 
Sometimes, the user needs to tell the system on how many 
“nodes” the application shall run. 

–  Collaborative applications and remote resource accesses: 
the user may want to see the parallelism. 

  For the application programmer: 
We can try to hide parallelism 
–  using parallelizing compilers 
–  using parallel libraries or software components 
–  In reality: partially hide parallelism behind a good API 
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Different Forms of Parallelism 
  An operating system has parallel processes to 

manage the many parallel activities that are going on 
concurrently. 

  A high-performance computing application executes 
multiple parts of the program in parallel in order to get 
the job done faster. 

  A bank that performs a transaction with another 
banks uses parallel systems to engage multiple 
distributed databases 

  A multi-group research team that uses a satellite 
downlink in Boston, a large computer in San-Diego 
and a “Cave” for visualization at the Univ. of Illinois 
needs collaborative parallel systems. 
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How important is Parallel 
Programming 2013 in Academia? 

  It’s a hot topic again 
–  There was significant interest in the 1980es and first half of 

1990es. 
–  Then the interest in parallelism declined until about 2005. 
–  Increased funding for HPC and emerging multicore architectures 

have made parallel programming a central topic. 
  Hard problems remain: 

–  what is the right user model and application programmer interface 
(API) for high performance and high productivity ? 

–  what are the right programming methodologies? 
–  how can we build scalable hardware and software systems? 
–  how can we get the user community to accept parallelism? 
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How important is Parallel 
Programming 2013 in Industry? 

  Parallelism has become a mainstream technology 
–  The “multicore challenge” is one of the current big issues. 
–  Industry’s presence at “Supercomputing” is growing. 
–  Most large-scale computational applications exist in parallel form 

(car crash, computational chemistry, airplane/flow simulations, 
seismic processing, to name just a few). 

–  Parallel systems sell in many shapes and forms: HPC systems for 
“number crunching”, parallel servers, multi-processor PCs. 

–  Students who learn about parallelism find good jobs. 
  However, the hard problems pose significant challenges: 

–  Lack of a good API leads to non-portable programs. 
–  Lack of a  programming methodology leads to high software cost. 
–  Non-scalable systems limit the benefit from parallelism. 
–  Lack of acceptance hinders dissemination of parallel systems. 
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What is so Special About Parallel 
Programming? 

Parallel programming is hard because: 
  You have to “think parallel” 

–   We tend to think step-by-step, which is closer to the way a sequential 
program is written. 

  All algorithms have ordering constraints 
–  They are a.k.a. data and control dependences, and they  are difficult to 

analyze and express => you need to coordinate the parallel threads using 
synchronization constructs (e.g., locks) 

  Deadlocks may occur. 
–  Incorrectly coordinated threads may cause a program to “hang”. 

  Race conditions may occur 
–  Race conditions occur when dependences are violated. They lead to non-

reproducible answers of the program. Most often this is an error. 
  Data partitioning, off-loading, and message generation are tedious 

–  But unavoidable when programming distributed and heterogeneous 
systems. 
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So, Why Can’t We Hide 
Parallelism? 

  Could we reuse parallel modules?  
–  Software reuse is still largely an unsolved problem 
–  Parallelism encoded in reusable modules may not 

be at the right level  
  Parallelizing an inner loop is almost always less efficient 

than an outer loop. 

  Could we use parallelizing compilers? 
–  Despite much progress in parallelizing compilers, 

there are still many programs that fail to use such 
tools, e.g. 
  programs not written in Fortran77 and C 
  irregular programs (e.g., using sparse data structures) 
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Basic Methods For Creating 
Parallel Programs 

  Write a sequential program, then parallelize it. 
–  Application-level approach: Study the physics behind the 

code. Identify steps that can be executed concurrently. Re-code 
these steps in parallel form. 

–  Program-level approach: Analyze the program. Find code 
sections that access disjoint data. Mark these sections for 
parallel execution. 

  Write a parallel program directly (from scratch) 
–  Advantage: parallelism is not inhibited by the sequential 

programming style. 
–  Disadvantages: 

  Large, existing applications: huge effort 
  If sequential programming is difficult already, this approach 

makes programming even more difficult 

Our focus 
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Where in the Application Can 
We Find Parallelism?  

 
 

call A 
call B 
call C 

parallelcall(A) 
parallelcall(B) 
call C 
waitfor A, B 

Subroutine-level parallelism Loop-level parallelism 

DO i=1,n 
   A(i)=B(i) 
ENDDO 

!$OMP PARALLEL DO 
DO i=1,n 
   A(i)=B(i) 
ENDDO 

Coarse-grain parallelism  
through domain  
decomposition 

Instruction-level parallelism  load B,R1 
load A,R0 
mul R1,#4.5 
add R0,R1 
store R1,C 

C=A+4.5*B compiler 
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How Can We Express This 
Parallelism? 

new_thread(id,subr, param) 
 
wait_thread(id) 

all threads live from 
the beginning to the 
end of the program 
or program section 

thread creation  
dynamic, as needed. 

Parallel Threads 

DO i=1,n 
 
 
 
 
 
 
 
 
 
 
 
 
 
ENDDO 

Parallel Loops 

PARALLEL DO i=1,n 
   call work(i) 
ENDDO 

PARALLEL DO i=1,n 
... 
ENDDO 

outermost loop in program 
is parallel 

multiple inner 
 parallel loops PARALLEL DO i=1,n 

... 
ENDDO 

PARALLEL DO i=1,n 
... 
ENDDO 
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How Can We Express This 
Parallelism? 

Parallel Sections 
COBEGIN 
   task1 
|| 
   task2 
|| 
   task3 
COEND 

task 1, 2, and 
3 are 
executed 
concurrently 

  
SPMD execution 

BEGIN (all in parallel) 
 
   ...do-the-work... 
 
END 

a copy of  
“do-the-work” is 
executed by 
each processor/
thread May be implicit 
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How do Parallel Tasks 
Communicate? 

shared-address-space, 
global-address-space, or 
shared-memory model: 

tasks see each other’s data 
(unless it is explicitly 
declared as private.) 

distributed-memory or 
message-passing model: 

tasks exchange data 
through explicit 
messages 

... 
A=3 
... 

... 
B=A 
... 

shared data  A 

task 1 task 2 

... 
A=3 
send(A,task2) 
... 

... 
 
receive (X,task1) 
B=X 

... 
task 1 task 2 

store 
load message 
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Generating Parallel Programs 
Automatically 

 
A quick tour through a  
parallelizing compiler 

 
The important techniques of parallelizing 

compilers are also the important techniques for 
manual parallelization 

 
See ECE 663 Lecture Notes and Slides 

engineering.purdue.edu/~eigenman/ECE663/Handouts 
 

 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

15 

Automatic Parallelization 

  The Scope of Auto-Parallelization 
  Loop Parallelization 101 
  Most Influential Dependence Removing 

Transformations 
  User’s Role in “Automatic” Parallelization 
  Performance of Parallelizing Compilers 
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parallel 
program 

Where Do Parallelization Tools 
Fit Into the Software Engineering 

Process ? 

User 
inserts 

Parallel 
constructs or 

directives 

Parallelizing 
compiler 

inserts parallel 
constructs or 

directives 

user 
tunes 

program 

Source-to-source 
restructurers: 
•  F90 → F90/OpenMP 
•  C     → C/OpenMP 
 
examples: 

•  SGI F77 compiler 
  (-apo -mplist option) 
•  Cetus compiler 

F90 
F90 

+ 
OpenMP 

Source- 
to- 

Source 
Restructurer 

Source 
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The Basics About 
Parallelizing Compilers 

  Loops are the primary source of parallelism in 
scientific and engineering applications.  

  Compilers detect loops that have independent 
iterations, I.e. iterations access disjoint data 

FOR I = 1 TO n 
     A[expression1] = … 
        … = A[expression2] 
ENDFOR 

Parallelism of loops 
accessing arrays: 
The loop is independent if, 
expression1 is different 
from expression2 (for any 
two different iterations) 
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… 

ENDFOR 
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Parallel Loop Execution 

  Fully-independent loops are executed in 
parallel. 

  Usually, any dependence prevents a loop 
from executing in parallel. 
Hence, removing dependences is very 
important. 

The execution of this 
loop on 4 processors 
may assign 250 
iterations to each 
processor 

FOR i=1 TO 250 
… 

ENDFOR 

FOR i=251 TO 500 
… 

ENDFOR 

FOR i=501 TO 750 
… 

ENDFOR 

FOR i=751 TO 1000 
… 

ENDFOR 
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Loop Parallelization 101 
Data Dependence: Definition 

A dependence exists between two data references if 
(in a sequential execution of the program) 
–  both references access the same storage location, 
–  and at least one of them is a write reference. 

Basic data dependence classification: 
Read after Write (RAW): flow dependence true dependence 

Write after Read (WAR): anti dependence false, or storage- 
related  dependences Write after Write (WAW): output dependence 

Read after Read (RAR):  input dependence not a  dependence 
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Data Dependence Classification 
Examples 

TRUE / FLOW / RAW 
S1:  X = … 
S2: … = X 
value read at S2 
depends on 
value written at S1 

ANTI / WAR 
S1: … = X 
S2:  X = … 
read at S1 
must occur before 
write at S2 

INPUT / RAR 
S1: … = X 
S2: … = X 
read at S1 
must occur before 
write at S2 

OUTPUT / WAW 
S1: X = … 
S2: X = … 
write at S2 must 
occur after write 
at S1 if X is read 
in a later statement  

(just for 
completeness; RAR 
is only relevant for 
certain 
optimizations) 
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Automatic Parallelization 
  The Scope of Auto-Parallelization 
  Loop Parallelization 101 
  Most Influential Dependence Removing 

Transformations 
  User’s Role in “Automatic” Parallelization 
  Performance of Parallelizing Compilers 
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DO i = 1, n 

work[1:n] = … 
. 
. 
. 
… = work[1:n] 

ENDDO 

C$OMP PARALLEL DO 
C$OMP+ PRIVATE(work) 

Each processor is given a separate version of the 
private data, so there is no sharing conflict  

Dependence-Removing  
Program Transformations I: 

Data Privatization 
Dependency: 
Elements of work 
read in iteration i’ 
were also written 
in iteration i’-1. 
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DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

scalar privatization 

loop-carried 
anti dependence 

Privatization 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(t) 
DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 

array privatization 

DO j=1,n 
   t(1:m)    =  A(j,1:m)+B(j) 
   C(j,1:m) =  t(1:m) + t(1:m)**2 
ENDDO 
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Array Privatization 
More complicated patterns for 

Array Privatization 
k = 5 
DO j=1,n 
   t(1:10)    =  A(j,1:10)+B(j) 
   C(j,iv) =  t(k) 
   t(11:m)    =  A(j,11:m)+B(j) 
   C(j,1:m) =  t(1:m) 
ENDDO 

DO j=1,n 
   IF (cond(j)) 
       t(1:m)    =  A(j,1:m)+B(j) 
      C(j,1:m) =  t(1:m) + t(1:m)**2 
   ENDIF 
   D(j,1) = t(1) 
ENDDO 
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DO i = 1, n 

… 
sum = sum + A[i] 
… 

ENDDO 

Dependence-Removing  
Program Transformations II: 
Reduction Recognition 

Each processor will accumulate partial sums, followed 
by a combination of these parts at the end of the loop. 

C$OMP PARALLEL DO 
C$OMP+ REDUCTION (+:sum) 

Dependency: 
Value of sum 
written in iteration 
i’-1 is read in 
iteration i’. 
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Rules for Reductions 

•  reduction statements in a loop have the form                  
X=X ⊗ expr  ,	�	� 

•  where X is either scalar or an array expression (a[sub], 
where sub must be the same on the LHS and the RHS), 

•  ⊗ is a reduction operation, such as +, *, min, max 

•  X must not be used in any non-reduction statement in 
this loop (however, there may be multiple reduction statements 
for X) 
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Reduction Parallelization 

DO j=1,n 
   sum = sum + a(j) 
    . . . 

ENDDO 

DO PARALLEL  j=1,n 
 ATOMIC: 
    sum = sum + a(j) 
 .  .  . 

ENDDO 

DO PARALLEL j=1,n 
PRIVATE s=0 
    s = s + a(j) 
    . . . 
POSTAMBLE 
    ATOMIC: 
        sum=sum+s 

ENDDO 

Preamble 

Postamble 

Preamble an Postamble 
are executed exactly once 
by all participating 
threads. 
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!$OMP PARALLEL PRIVATE(s) 
s=0 
!$OMP DO 
DO i=1,n 
     s=s+A(i) 
ENDDO 
!$OMP ATOMIC 
sum = sum+s 
!$OMP END PARALLEL  

 
DO i=1,n 
   sum  = sum + A(i) 
ENDDO 

Reduction  
Parallelization II 

Remember, OpenMP has a reduction clause; 
only reduction recognition is needed: 
!$OMP PARALLEL DO 
!$OMP+REDUCTION(+:sum) 
DO i=1,n 
   sum  = sum + A(i) 
ENDDO 

DO i=1,num_proc 
    s(i)=0 
ENDDO  
!$OMP PARALLEL DO  
DO i=1,n 
   s(my_proc)=s(my_proc)+A(i) 
ENDDO  
DO i=1,num_proc 
   sum=sum+s(i) 
ENDDO 

Scalar Reductions 

Expanded 
reduction 
implementation 

Privatized 
reduction 
implementation 
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DIMENSION sum(m),s(m) 
!$OMP PARALLEL PRIVATE(s) 
s(1:m)=0 
!$OMP DO 
DO i=1,n 
     s(expr)=s(expr)+A(i) 
ENDDO 
!$OMP ATOMIC 
sum(1:m) = sum(1:m)+s(1:m) 
!$OMP END PARALLEL  

DIMENSION sum(m) 
DO i=1,n 
   sum(expr)  = sum(expr) + A(i) 
ENDDO 

Reduction Parallelization III 
DIMENSION sum(m),s(m,#proc) 
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    s(i,j)=0 
ENDDO 
ENDDO  
!$OMP PARALLEL DO  
DO i=1,n 
   s(expr,my_proc)=s(expr,my_proc)+A(i) 
ENDDO  
!$OMP PARALLEL DO 
DO i=1,m 
DO j=1,#proc 
    sum(i)=sum(i)+s(i,j) 
ENDDO 
ENDDO 
 

Note, OpenMP 1.0 does not support such array reductions 

Array  Reductions (a.k.a. irregular or 
histogram reductions) 
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Performance Considerations 
for Reduction Parallelization 

  Parallelized reductions execute substantially more code than 
their serial versions ⇒  overhead if the reduction (n) is small. 

  In many cases (for large reductions) initialization and sum-up 
are insignificant.  

  False sharing can occur, especially in expanded reductions, if 
multiple processors use adjacent array elements of the 
temporary reduction array (s).  

  Expanded reductions exhibit more parallelism in the sum-up 
operation compared to privatized reductions. 

  Potential overhead in initialization, sum-up, and memory used 
for large, sparse array reductions ⇒ compression schemes can 
become useful. 
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ind = k 
DO i=1,n 
   ind  = ind + 2 
   A(ind) = B(i) 
ENDDO 

loop-carried 
flow  
dependence 

Parallel DO i=1,n 
   A(k+2*i) = B(i) 
ENDDO 

This is the simple case of an induction variable 

Dependence-Removing  
Program Transformations III: 

Induction Variable Substitution 
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Generalized Induction Variables 
ind=k 
DO j=1,n 
   ind  = ind + j 
   A(ind) = B(j) 
ENDDO 

Parallel DO j=1,n 
   A(k+(j**2+j)/2) = B(j) 
ENDDO 

DO i=1,n 
   ind1  = ind1 + 1 
   ind2  = ind2 + ind1 
   A(ind2) = B(i) 
ENDDO 

DO i=1,n 
   DO j=1,i 
       ind  = ind + 1 
       A(ind) = B(i) 
   ENDDO 
ENDDO 
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Rules for Induction Variables 
  induction statements in a loop nest have the form   

   iv=iv+expr   or  iv=iv*expr,          
   where iv is an scalar integer 

  expr must be loop-invariant or another induction variable (there 
must not be cyclic relationships among IVs) 

  iv must not be assigned in a non-induction statement 
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Examples of  parallelizing compiler options (typically there is a large 
set of options) 
–  optimization levels  

  optimize : simple analysis, advanced analysis, alias 
analysis, data-dependence analysis, locality 
enhancement, array privatization/reduction 

  aggressive: data padding, data layout adjustment 
 

–  subroutine inline expansion 
  inline all, specific routines, how to deal with libraries 
 

–  try specific optimizations 
  e.g., recurrence and reduction recognition, loop fusion, 

tiling  

User’s Role: 
Choice of Compiler Options 

Will primarily increase 
compilation time 

Makes up for lack of 
interprocedural analysis 

May enhance OR degrade 
performance 
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More About Compiler Options 
–  Limits on amount of optimization:  

  e.g., size of optimization data structures, number of 
optimization variants tried 

–  Make certain assumptions:  
  e.g., array bounds are not violated, arrays are not aliased 

–  Machine parameters:  
  e.g., cache size, line size, mapping 

–  Listing control  

Compiler options can be a substitute for advanced compiler strategies. 
If the compiler has limited information, the user can help out. 

Compiler options are very important for the user to know. 
Setting good compiler options can make a big performance difference. 
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User Tuning: 
Inspecting the Translated Program 
  Source-to-source restructurers: 

–   Transformed source code is the actual output 
–   Example: Cetus 
=> The output can be a starting point for code tuning 

  Code-generating compilers: 
–   Some have an option for viewing the translated 

(parallel) code 
–   Example: SGI f77 -apo –mplist 
⇒  You may modify the source code to make it easier 

for the compiler to detect parallelism 

. 
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Compiler Listings 

The listing gives many useful clues for 
improving the performance: 
–  Loop optimization tables 
–  Reports about data dependences 
–  Explanations about applied transformations 
–  The annotated, transformed code 
–  Calling tree 
–  Performance statistics 

The type of reports to be included in the listing 
can be set through compiler options. 

Loop nest summary: 
CLENMO_do#1: loop is parallel 
CLENMO_do#1#1: loop is serial, because 

 it contains I/O statements, 
 and the following variables (may) 
 have loop-carried dependences: VEC[]  
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Automatic Parallelization 
  The Scope of Auto-Parallelization 
  Loop Parallelization 101 
  Most Influential Dependence Removing 

Transformations 
  User’s Role in “Automatic” Parallelization 
  Performance of Parallelizing Compilers 
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Performance of 
Parallelizing Compilers 

0 
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6 
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Tuning 
 Automatically-Parallelized 

Programs 
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Why Would We Want toTune 
Automatically-parallelized 

Code? 
 
Because 
  compiler techniques are limited 

E.g., array reductions are parallelized by only few compilers 
  compilers may have insufficient information  

E.g., 
–  loop iteration range may be input data 
–  variables are defined in other subroutines (no 

interprocedural analysis) 
  Tuning the compiler-parallelized program is generally 

easier than hand parallelizing a sequential program. 
  



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

42 

Methods for Tuning  
Automatically-Parallelized 

Programs 
  1. Tuning compiler options 

–  Parallelizers have many more options than 
standard compilers 

  2. Changing the source program 
–  so that the parallelizer can recognize more 

opportunities for optimizations 
  3. Manually improving the transformed code 

–  This task is similar to explicit parallel 
programming.  

–  The parallelizer must be a source-to-source 
restructurer. 
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Tuning Parallelizer Options 
 Tuning compiler options may improve 

performance by 100% or more. 
 Examples: 

– compile for specific machine architecture 
– enable/disable recurrence recognition 
– padding data structures 
– enable/disable tiling 
– set parallelization threshold 
– set degree of inlining 
– strict language standard interpretation 
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Changing the Source Program 

  Inserting directives, such as 
–  explicitly parallel loops (e.g., OpenMP syntax) 
–  properties of data structures (e.g., permutation array) 
–  assert independence 

  Modifying the source code.  
Examples: 
–  assigning explicit values to variables 
–  removing pointers and obscure code 
–  removing debug output statements 
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Manually Improving the 
Transformed Code 

  The basic method: 
–  inspect the most time-consuming loops. If they are 

not parallelized, find out why; then transform them 
by hand. 

  Remember (very important): 
–  The compiler gives hints in its listing,  which may 

tell you where to focus attention. E.g., which 
variables have data dependences. 
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Exercise 1: 
A multi-threaded “Hello world” program 
  Write a multithreaded program where each thread 

prints “hello world”. 
#include “omp.h” 
void main() 
{ 

#pragma omp parallel 
 { 

     int ID = omp_get_thread_num(); 
     printf(“ hello(%d) ”, ID); 
     printf(“ world(%d) \n”, ID); 
   } 
} 

Sample Output: 
hello(1) hello(0) world(1) 

world(0) 

hello (3) hello(2) world(3) 

world(2) 
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Exercise 2: 
A multi-threaded “pi” program 

  On the following slide, you’ll see a sequential 
program that uses numerical integration to compute 
an estimate of PI. 

  Parallelize this program using OpenMP.  There are 
several options (do them all if you have time): 

  Do it as an SPMD program using a parallel region only. 
  Do it with a work sharing construct. 

  Remember, you’ll need to make sure multiple 
threads don’t overwrite each other’s variables.  
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Our running Example: The PI program 
Numerical Integration 

∫  4.0 

(1+x2) 
dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as 
a sum of rectangles: 

Where each rectangle has width Δx 
and height F(xi) in the middle of 
interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 X 0.0 
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PI Program:  
The sequential program 

static long num_steps = 100000; 
double step; 
void main () 
{    int i;    double x, pi, sum = 0.0; 
 

   step = 1.0/(double) num_steps; 
 

   for (i=1;i<= num_steps; i++){ 
    x = (i-0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 
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PI Program 
The OpenMP parallel version 

#include <omp.h> 
static long num_steps = 100000;          
double step; 
{    int i;    double x, pi, sum = 0.0; 

   step = 1.0/(double) num_steps; 
#pragma omp parallel for reduction(+:sum) private(x) 

   for (i=1;i<= num_steps; i++){ 
    x = (i-0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 
OpenMP adds 
2 lines of code 
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OpenMP PI Program:   
Parallelized without a reduction clause 

#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{    int i;    double x, pi, sum[NUM_THREADS] ={0.0}; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel  
{    double x;     int i, id; 

   id = omp_get_thread_num();  
#pragma omp for 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum[id] += 4.0/(1.0+x*x); 
   } 

}    for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step; 
} 
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OpenMP PI Program:   
Without the use of a worksharing (omp for) 

construct => SPMD program 
#include <omp.h> 
static long num_steps = 100000;         double step; 
void main () 
{    int i;    double x, pi, sum[NUM_THREADS] ={0}; 

   step = 1.0/(double) num_steps; 
 
#pragma omp parallel  
{    double x;     int id, i; 

   id = omp_get_thread_num(); 
               int nthreads = omp_get_num_threads(); 

   for (i=id;i< num_steps; i=i+nthreads){ 
    x = (i+0.5)*step; 
    sum[id] += 4.0/(1.0+x*x); 
   } 

} 
   for(i=0, pi=0.0;i<NUM_THREADS;i++) pi += sum[i] * step; 

} 

SPMD 
Program: 
Each thread 
runs the same 
code; the 
thread ID 
selects any  
thread-specific 
behavior. 
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Performance Tuning  
Example 1: MDG 

  MDG: A Fortran code of the “Perfect Benchmarks”.   
  Advanced autoparallelizers may recognize the 

parallelism in this code.  

0

0.5

1

1.5

2

2.5

3

3.5

original tuning step 1 tuning step 2

Performance on a  
4-core machine 
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MDG: Tuning Steps 
Step 1: Parallelize the most time-

consuming loop. It consumes 95% of the 
serial execution time.  
The transformations it takes to parallelize this 

loop are: 
–  array privatization 
–  reduction parallelization 

Step 2: Balancing the iteration space of this 
loop. 
–  Loop nest is “triangular”. Default block 

partitioning would create unbalanced 
assignment of iterations to processors. 
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MDG 

c1  =  x(1)>0 

c2  =  x(1:10)>0 

 

DO i=1,n 

  DO j=i,n 

    IF (c1) THEN rl(1:100) = … 

    … 

    IF (c2) THEN … = rl(1:100) 

    sum(j) = sum(j) + … 

  ENDDO 

ENDDO 

c1  =  x(1)>0 
c2  =  x(1:10)>0  
 
Allocate(xsum(n,1:#proc)) 
 
C$OMP PARALLEL DO 
C$OMP+ PRIVATE (I,j,rl,id)  
C$OMP+ SCHEDULE (STATIC,1)  
DO  i=1,n 
   id = omp_get_thread_num() 
   DO j=i,n 

      IF (c1) THEN rl(1:100) = … 

      … 

      IF (c2) THEN … = rl(1:100) 

      xsum(j,id) = xsum(j,id) + … 

   ENDDO 

ENDDO 

 
C$OMP PARALLEL DO 
DO i=1,n 
   sum(i)=sum(i)+xsum(j,1:#proc) 
ENDDO 

Structure of the most time-
consuming loop in MDG: 

Original 

Parallel 
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ARC2D: A Fortran code of the “Perfect 
Benchmarks”.   

Performance Tuning  
Example 2: ARC2D 

0

1

2

3

4

5

6

original locality granularity

ARC2D is parallelized 
very well by available 
compilers. However, the 
mapping of the code to 
the machine could be 
improved. 
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ARC2D: Tuning Steps 

  Step 1:  
Loop interchanging increases cache locality through 

stride-1 references 
  Step 2:  

Move parallel loops to outer positions 
  Step 3:  

Move synchronization points outward 
  Step 4: 

 Coalesce loops 
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!$OMP PARALLEL DO 
!$OMP+PRIVATE(R1,R2,K,J) 
      DO k = 2, kmax-1  
          DO j = jlow, jup 
             r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k) 
             r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k) 
             coef(j, k) = ABS(r1/r2) 
         ENDDO 
      ENDDO 
!$OMP END PARALLEL 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(R1,R2,K,J) 
      DO j = jlow, jup 
          DO k = 2, kmax-1 
             r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k) 
             r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k) 
            coef(j, k) = ABS(r1/r2) 
         ENDDO 
      ENDDO 
!$OMP END PARALLEL 

ARC2D 

Loop interchanging increases (spatial) cache locality 
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ARC2D 
Increasing 
parallel loop 
granularity 
through  
NOWAIT clause 

!$OMP PARALLEL 
!$OMP+PRIVATE(LDI,LD2,LD1,J,LD,K) 
     DO k = 2+2, ku-2, 1 
!$OMP DO 
        DO j = jl, ju 
           ld2 = a(j, k) 
           ld1 = b(j, k)+(-x(j, k-2))*ld2 
           ld = c(j, k)+(-x(j, k-1))*ld1+(-y(j, k-1))*ld2 
           ldi = 1./ld 
           f(j, k, 1) = ldi*(f(j, k, 1)+(-f(j, k-2, 1))*ld2+(-f(j, k-1, 1))*ld1) 
           f(j, k, 2) = ldi*(f(j, k, 2)+(-f(j, k-2, 2))*ld2+(-f(j,k-2, 2))*ld1) 
           x(j, k) = ldi*(d(j, k)+(-y(j, k-1))*ld1) 
           y(j, k) = e(j, k)*ldi 
        ENDDO 
!$OMP END DO 
     ENDDO 
!$OMP END PARALLEL 

NOWAIT 

Note that  
•  the k-loop is executed in 

sequential order and  
•  all iterations that have the 

same value jx are executed 
by the same thread in all 
iterations of the k-loop 
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DO j=1,m 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
ENDDO 

DO i1=1,n,block 
   DO j=1,m 
      DO i=i1,min(i1+block-1,n) 
         B(i,j)=A(i,j)+A(i,j-1) 
      ENDDO  
   ENDDO 
ENDDO 

Related Technique: 
Loop Blocking 

Step1: Split inner loop in two (a.k.a. loop “stripmining”) 
Step2: interchange outer two loops 

j 

i 

j 

i 

!$OMP PARALLEL 
DO j=1,m 
!$OMP DO SCHEDULE(STATIC,block) 
   DO i=1,n 
      B(i,j)=A(i,j)+A(i,j-1) 
   ENDDO 
!$OMP END DO NOWAIT 
ENDDO 
!$OMP END PARALLEL 

The same effect is 
achieved like this: 

Loop blocking 
increases 
temporal 
locality 
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ARC2D 
!$OMP PARALLEL DO 
!$OMP+PRIVATE(n, k,j) 
      DO  n = 1, 4 
       DO k = 2, kmax-1 
        DO j = jlow, jup 
         q(j, k, n) = q(j, k, n)+s(j, k, n) 
         s(j, k, n) = s(j, k, n)*phic 
        ENDDO 
       ENDDO 
      ENDDO 
!$OMP END PARALLEL 

!$OMP PARALLEL DO 
!$OMP+PRIVATE(nk,n,k,j) 
       DO nk = 0,4*(kmax-2)-1 
        n = nk/(kmax-2) + 1 
        k = MOD(nk,kmax-2)+2 
        DO j = jlow, jup 
         q(j, k, n) = q(j, k, n)+s(j, k, n) 
         s(j, k, n) = s(j, k, n)*phic 
        ENDDO 
       ENDDO  
!$OMP END PARALLEL 
 

Increasing parallel loop granularity 
though loop coalescing (a.k.a. loop collapsing) 
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PARALLEL DO ij=1,n*m 
   i = 1 + (ij-1) DIV m 
   j = 1 + (ij-1) MOD m 
  A(i,j) = B(i,j) 
ENDDO    

PARALLEL DO i=1,n 
  DO j=1,m 
      A(i,j) = B(i,j) 
  ENDDO 
ENDDO 

loop 
coalescing 

Underlying Technique: 
 Loop Coalescing/Collapsing 

Transformation can be beneficial if  
•  n is small, unknown, or variable 
•  the loop body is large 
•  computation is irregular 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

63 

Performance Tuning Example 
3: EQUAKE 

EQUAKE: A C code of the SPEC OMP 
2001 benchmarks.   

EQUAKE is hand-
parallelized with 
relatively few code 
modifications. It 
achieves excellent 
speedup. 

0
1
2
3
4
5
6
7
8

original
sequential

initial
OpenMP

improved
allocate
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EQUAKE: Tuning Steps 

  Step1:   
Parallelizing the four most time-consuming loops 

  inserted OpenMP pragmas for parallel loops and private 
data 

  array reduction transformation 

  Step2:  
A change in memory allocation 
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  for (i = 0; i < nodes; i++)  
    while (...) { 
      ... 
      exp = loop-local computation; 
      w[...] += exp;  
      ... 
  } 
 
 
 
 
 

 /* malloc w1[numthreads][…] */ 
 
#pragma omp parallel for 
  for (j = 0; j < numthreads; j++)  
    for (i = 0; i < nodes; i++) { w1[j][i] = 0.0; ...; } 
 
#pragma omp parallel private(my_cpu_id,exp,...) 
{ 
  my_cpu_id = omp_get_thread_num(); 
 
#pragma omp for 
  for (i = 0; i < nodes; i++)  
    while (...) { 
      ... 
      exp = loop-local computation; 
      w1[my_cpu_id][...] += exp; 
      ... 
  } 
} 
#pragma omp parallel for 
  for (j = 0; j < numthreads; j++) { 
    for (i = 0; i < nodes; i++) { w[i] += w1[j][i]; ...;} 

EQUAKE  
 

subroutine 
smvp 
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp)  
int my_cpu_id = 1 
!$ my_cpu_id = omp_get_thread_num() + 1 
!$OMP DO 
DO j=1,npopsiz-1 
   CALL ran3(1,rand,my_cpu_id,0) 
   iother=j+1+DINT(DBLE(npopsiz-j)*rand) 
!$   IF (j < iother) THEN 
!$      CALL omp_set_lock(lck(j)) 
!$      CALL omp_set_lock(lck(iother)) 
!$   ELSE 
!$      CALL omp_set_lock(lck(iother)) 
!$      CALL omp_set_lock(lck(j)) 
!$   END IF 
   itemp(1:nchrome)=iparent(1:nchrome,iother) 
   iparent(1:nchrome,iother)=iparent(1:nchrome,j) 
   iparent(1:nchrome,j)=itemp(1:nchrome) 
   temp=fitness(iother) 
   fitness(iother)=fitness(j) 
   fitness(j)=temp 
!$   IF (j < iother) THEN 
!$      CALL omp_unset_lock(lck(iother)) 
!$      CALL omp_unset_lock(lck(j)) 
!$   ELSE 
!$      CALL omp_unset_lock(lck(j)) 
!$      CALL omp_unset_lock(lck(iother)) 
!$   END IF 
END DO 
!$OMP END DO 
!$OMP END PARALLEL 

Example 4: 
GAFORT 

subroutine 
shuffle 

•  Parallel shuffle 
•  20,000 locks 
•  Deadlock 
•  Parallel random 

number generation 

Different executions 
produce different 
results => 
asynchronous 
algorithm,  
non-deterministic 
parallelism 
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp)  
int my_cpu_id = 1 
!$ my_cpu_id = omp_get_thread_num() + 1 
!$OMP DO 
DO j=1,npopsiz-1 
   CALL ran3(1,rand,my_cpu_id,0) 
   iother=j+1+DINT(DBLE(npopsiz-j)*rand) 
!$   IF (j < iother) THEN 
!$      CALL omp_set_lock(lck(j)) 
!$      CALL omp_set_lock(lck(iother)) 
!$   ELSE 
!$      CALL omp_set_lock(lck(iother)) 
!$      CALL omp_set_lock(lck(j)) 
!$   END IF 
   itemp(1:nchrome)=iparent(1:nchrome,iother) 
   iparent(1:nchrome,iother)=iparent(1:nchrome,j) 
   iparent(1:nchrome,j)=itemp(1:nchrome) 
   temp=fitness(iother) 
   fitness(iother)=fitness(j) 
   fitness(j)=temp 
!$   IF (j < iother) THEN 
!$      CALL omp_unset_lock(lck(iother)) 
!$      CALL omp_unset_lock(lck(j)) 
!$   ELSE 
!$      CALL omp_unset_lock(lck(j)) 
!$      CALL omp_unset_lock(lck(iother)) 
!$   END IF 
END DO 
!$OMP END DO 
!$OMP END PARALLEL 

Atomic 
Region 

This is also referred 
to as Transactional 
Memory 

Atomic { 
 
 
 
} 

Execution 
by each 
thread 
appears 
indivisible 
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Atomic Region vs. Critical Section 

AtomicRegion { 
   <statements> 
} 

68 

CriticalSection { 
   <statements> 
} 

All processors execute 
<statements> indivisibly 
 
#threads executing 
<statements> in parallel 
 
Deterministic execution 
order 
 
Implementation complexity 
 

✔ ✔ 

All, but conflicts 
force serialization 
or rollback 

1 

high low 

no no 
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Parallel Programming 
Tools and 

Methodologies 

69 
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What Tools Did We Use for 
Performance Analysis and Tuning? 

  Compilers 
–  the starting point for performance tuning was the 

compiler-parallelized program.  
–  It reports: parallelized loops, data dependences, 

call graph. 
  Subroutine and loop profilers 

–  focusing attention on the  most time-consuming 
loops is absolutely essential. 

  Performance “spreadsheets”: 
–  typically comparing performance differences at the 

loop level. 
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Guidelines for Fixing 
“Performance Bugs” 

  The methodology that worked for us: 
–  Use compiler-parallelized code as a starting point 
–  Get loop profile and compiler listing 
–  Inspect time-consuming loops (largest potential  

for improvement) 
  Case 1. Check for parallelism where the compiler could 

not find it 
  Case 2. Improve parallel loops where the speedup is 

limited 

Remember: we are considering a program-level approach to performance 
tuning, as opposed to an application-level approach. 
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Performance Tuning 
Case 1: if the loop is not parallelized automatically, do 

this: 
  Check for parallelism: 

–  read the compiler explanation, if available 
–  a variable may be independent even if the compiler detects 

dependences (compilers are conservative) 
–  check if conflicting array is privatizable (e.g., compilers don’t 

perform array privatization well) 
–  check if the conflicting variable is a reduction or induction 

variable 
  If you find parallelism, add OpenMP parallel 

directives, or make the information explicit for the 
parallelizer 
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Performance Tuning 
Case 2: if the loop is parallel but does not perform 

well, consider several optimization factors: 
  

Memory 

CPU CPU CPU 

Parallelization  
overhead 

High overheads are caused by: 
• parallel startup cost 
• small loops 
• additional parallel code 
• over-optimized inner loops 
• less optimization for  parallel code 

Spreading  
overhead 

• load imbalance 
• synchronized section 
• non-stride-1 references 
• many shared references  

(memory bandwidth)  
• low cache affinity 

 (increased cache misses) 

serial 
program 

parallel 
program 
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Parallelization Overheads 
  Parallel startup cost 

–  even with efficient runtime libraries and microtasking schemes, 
fork/join overheads are in the order of 1-10 µs. They are 
machine-specific and may increase with the number of 
processors. 

–  the overhead includes the time to  
  wakeup helper tasks and communicate data to them (fork), and 
  the barrier synchronization at the end of the loop (join) 

  Small loops 
–  loops with small numbers of iterations or small bodies 
–  generally, if the average execution time of a loop is less than  
    0.1 ms,  you cannot expect good speedup. 

  How many statements execute in that time? 
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Parallelization Overheads continued 
  Additional parallel code 

–  parallel code may perform more work than the serial code 
  examples:  - initialization and final sum of reductions 
                      - parallel search may search a larger space than the 
                        serial equivalent 

  Over-optimized inner loops 
–  the compiler may parallelize a subroutine, not knowing that it 

is called from within a parallel loop 

  Less optimization for  parallel code 
–  compilers are typically more conservative when optimizing 

parallel code. E.g., Sun’s OpenMP compiler uses -O3, 
although -O5 is available for serial code 
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Spreading Overheads 

  Load imbalance 
–  uneven numbers of iterations 

  triangular loops 
  many if statements 
  non-uniform memory or disk access times 

–  interruptions 
  other programs 
  OS processes 

  Synchronized section 
–  even short critical sections can decrease performance 

substantially 
–  then there is the cost of calling synchronization primitives 
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Spreading Overheads continued 
  Non-stride-1 references 

–  this is already a problem in serial programs 
–  issues in parallel programs: 

  several processors read from the same cache line  
    => more cache misses 
  several processors write to the same cache line  
    => false sharing even if the accesses go to different data 

  Many shared references 
–  private data can be kept in the local memory (segment) 
–  bandwidth of shared memory is limited 

  Low cache affinity 
–  additional cache misses are incurred if processors access 

different data in consecutive loops 
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Profiling Techniques 

  Simple timing on/off calls before/after loops 
are useful. 

  Optimizations often affect other program 
sections as well. Be sure to monitor the 
overall program execution time as well. 

  Both inclusive and exclusive profiles are 
useful. 

  Be aware that inserted subroutine calls may 
inhibit certain compiler optimizations. 

78 
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MDG performance 
optimization report 

(see handout) 

79 
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Performance Analysis Tool 
Examples 

Analyze each 
Parallel region 

Find serial 
regions that are 
hurt by 
parallelism 

Sort or filter 
regions to 
navigate to 
hotspots 
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Performance Analysis Tool 
Examples 
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Performance Analysis Tool 
Examples 
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Performance Spreadsheet 

Program Structure View 

Performance Analysis Tool 
Examples 
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Introductions to 
 
 OpenMP 

 
 MPI 
 
(see separate slides) 
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PI Program in MPI 
static long num_steps = 100000;         double step; 
void main () { 
     int i;    double x, pi, sum =0; 
      step = 1.0/(double) num_steps; 
      double x;     int id, i; 
 
      MPI_Init(…); 
      MPI_Comm_rank (MPI_COMM_WORLD, &id);//rank of each process 
      MPI_Comm_size (MPI_COMM_WORLD, &p);//total number of processes 
 
      for (i=id;i< num_steps; i=i+p) { 
         x = (i+0.5)*step; 
         sum += 4.0/(1.0+x*x); 
      } 
 
     MPI_Allreduce(…sum…pi…); 
 
      MPI_Finalize(); 
} 
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Creating and starting a new thread: 
   int pthread_create (pthread_t *thread,  
                               const pthread_attr_t  *attr,  
                                    void * (*routine)(void*),  
                                    void* arg) 
  Returns 0 if successful, or non-zero error code. 
  thread points to the ID of the newly created thread.  
  attr specifies the thread attributes to be applied to the new 

thread. NULL for default attributes.  
  routine is the name of the function that the thread calls when 

started. It takes a single parameter (arg), a pointer to void. 

Introduction to Pthreads 
POSIX Standard, IEEE Std 1003.1c-1995 
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Introduction to Pthreads 

Blocking the calling thread until the 
specified thread ends: 

   int pthread_join (pthread_t   thread,  
                              void  **  status);  

87 
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Introduction to Pthreads 

More thread management functions 
  pthread_self : find out own thread ID  
  pthread_equal : test two thread ID for equality  
  pthread_detach : set thread to release resources  
  pthread_exit : exit thread without exiting the process  
  pthread_cancel : terminates another thread  

88 
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Mutexes  
int pthread_mutex_lock (pthread_mutex_t *mutex);   

 locks the mutex. If already locked, blocks caller. 
 
int pthread_mutex_trylock (pthread_mutex_t *mutex);  

like mutex_lock, but no blocking if locked already 
 
int pthread_mutex_unlock (pthread_mutex_t *mutex);  

wakes 1st thread waiting on mutex  
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Semaphores  
  init semaphore to value: 

int sem_init (int sem_t * sem, int p shared, unsigned int 
value)   

  increments sem. Any waiting thread will wake up: 
int sem_post (int sem_t * sem)   

  decrements sem.  Blocks if sem is 0: 
int sem_wait (int sem_t * sem)  
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Data Sharing in Pthreads  
  Parent and child thread share global variables 
  However, it is not guaranteed that a write to a 

variable is seen immediately by the other thread 
  Synchronization functions make the global memory 

state consistent 
  For volatile variables, the compiler will generate code 

that reads from/write to memory at every access.  
–  BUT: the architecture may still not guarantee that the 

memory state is immediately seen by the other thread.  

91 

Understanding memory/consistency models is an advanced topic. Whenever 
possible, use programming constructs that update the memory state implicitly. 
•  use OpenMP parallel and workshare constructs with implicit barriers 
•  enclose shared variables with synchronization functions in Pthreads 
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Translating OpenMP into  
(P)threads 

  Most architectures do not have instructions 
that support the execution of parallel loops 
directly 

  A compiler (an OpenMP preprocessor) must 
translate the source program into a thread-
based form.  

  The thread-based form of the program makes 
calls to a runtime library that supports the 
OpenMP execution scheme. 
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Instructions that support direct 
execution of parallel loops 

1. Example architecture: Alliant FX/8 (1980es) 
–  machine instruction for parallel loop 
–  HW concurrency bus supports loop scheduling 

a=0 
DO i=1,n 
   b(i) = 2 
ENDDO 
b=3 

store #0,<a> 
load <n>,D6 
sub 1,D6 
load &b,A1 
cdoall D6 
   store #2,A1(D7.r) 
endcdoall   
store #3,<b> 

D7 is reserved 
for the loop 
variable. 
Starts at 0. 
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Usual Underlying Execution Scheme 
for Parallel Loops (a.k.a. Microtasking) 
2. Microtasking scheme (dates back to early 

IBM mainframes) 

p1 p2 p3 p4 
sequential 

sequential 

sequential 

parallel 

parallel 

init_helper_tasks (create Pthreads) 

wakeup_helpers 

wakeup_helpers 
sleep_helpers 

sleep_helpers 

microtask startup: a few µs 
pthreads startup: 100 µs or more 

problem: 
loop startup 
must be very fast 
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Compiler Transformation for the 
Microtasking Scheme 

   a=0 
C$OMP PARALLEL DO 
   DO i=1,n   
      b(i) = 2 
   ENDDO 
   b=3 

call init_microtasking() // once at program start 
... 
a=0 
call loop_scheduler(loopsub,i,1,n,b) 
b=3 

subroutine loopsub(mytask,lb,ub,b) 
DO i=lb,ub 
   b(i) = 2 
ENDDO 
END 

Master task side 
  loop_scheduler: 
     partition loop iterations 
     wakeup 
     call loopsub(...) 
     barrier (all flags reset) 
     return 

Helper task side 
 loop: 
   wait for flag 
   call loopsub(id,lb,ub,param) 
   reset flag 

Helper 1: 
loopsub 
 lb,ub 
param 

flag 

shared data 
Loop scheduler: 
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OpenMP vs MPI 
lessons learned from a seismic processing applications  
  MPI and OpenMP can look like opposite ends of 

some programming method spectrum 
  However, even here it is true that  

–  it is at least as important how you use a model than what the 
model is. 

  Our lesson will show that you can program in MPI 
style using OpenMP. In particular, the following are 
myths: 
–  MPI exploits outermost parallelism, OpenMP exploits inner 

parallelism 
–  MPI programs have good locality, OpenMP programs do not 
–  MPI threads are very different from OpenMP threads 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

97 

Case Study of a Large-Scale 
Application 

 Overview of the Application 
 Basic use of MPI and OpenMP 
  Issues Encountered 
 Performance Results 
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Overview of Seismic 

  Representative of modern seismic processing 
programs used in the search for oil and gas.  

  20,000 lines of Fortran. C subroutines 
interface with the operating system. 

  Available in a serial and a parallel variant. 
  Parallel code is available in a message-

passing and an OpenMP form.  
  Is part of the SPEC HPC benchmark suite. 

–  SPEC HPC is now retired 
   Includes 4 data sets: small to x-large.  
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Seismic: 
Basic Characteristics 

  Program structure:  
–  240 Fortran and 119 C subroutines. 

  Main algorithms: 
–   FFT, finite difference solvers 

  Running time of Seismic (@ 500MFlops): 
–  small data set:  0.1 hours 
–  x-large data set: 48 hours 

  IO requirement: 
–  small data set: 110 MB 
–  x-large data set: 93 GB 
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Basic Parallelization Scheme 

  Split into p parallel tasks  
(p = number of processors) 

Program Seismic 
If (rank=0)   initialization 
 
 
call main_subroutine() 
 

→ SPMD execution scheme.  
    Initialization done by master thread only 

Program Seismic 
   initialization 
 
C$OMP PARALLEL 
   call main_subroutine() 
C$OMP END PARALLEL 

MPI OpenMP 
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Synchronization and 
Communication 

compute 

communicate 

compute 

communicate 

MPI: 
All-to-all send/receive 
 
OpenMP: 
copy to shared buffer; 
barrier_synchronization; 
copy from shared buffer; 
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Issues: 
Mixing Fortran and C 

  Bulk of computation is done 
in Fortran 

  Utility routines are in C: 
–  IO operations 
–  data partitioning routines 
–  communication/synchronization 

operations 
  OpenMP-related issues: 

–  IF C/OpenMP compiler is not 
available, data privatization 
must be done through 
“expansion”. 

–  Mix of Fortran and C is 
implementation dependent 

Data privatization in OpenMP/C 
#pragma omp thread private (item)  
float item; 
void x(){ 
  ... = item; 
} 

Data expansion in  
absence a of OpenMP/C compiler 
float item[num_proc]; 
void x(){ 
  int thread; 
  thread = omp_get_thread_num_(); 
  ... = item[thread]; 
} 
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Broadcast Common Blocks 
common /cc/ cdata 
common /dd/ ddata 
C initialization: 
IF (rank=0) 
   cdata = ... 
   ddata = ... 
ENDIF 
 
C copy common blocks: 
call syspcom () 
 
call main_subroutine() 

OpenMP issue: At the start of the parallel region it is not yet known 
which common blocks need to be copied in. 
  
Solution:   copy-in all common blocks  => overhead 
 

common /cc/ cdata 
common /dd/ ddata 
#pragma OMP threadprivate /cc/,/dd/ 
c initialization 
   cdata = ... 
   ddata = ... 
 
 
C$OMP PARALLEL 
C$OMP+COPYIN(/cc/, /dd/) 
   call main_subroutine() 
C$END PARALLEL  
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OpenMP Issues: 
Multithreading IO and malloc 

IO routines and memory allocation are called within 
parallel threads, inside C utility routines. 

  OpenMP requires all standard libraries and intrinsics 
to be thread-save. However the implementations are 
not always compliant. 
 → system-dependent solutions need to be found 

  The same issue arises if standard C routines are 
called inside a parallel Fortran region or in non-
standard syntax. 
 Standard C compilers do not know anything about OpenMP 

and the thread safety requirement. 

Note, this is not an issue in MPI 
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More OpenMP Issues: 
Processor Affinity 

  OpenMP currently does not specify or provide 
constructs for controlling the binding of threads to 
processors.  

  Processors can migrate, causing overhead. This 
behavior is system-dependent. 
System-dependent solutions may be available. 

parallel 
region tasks may migrate as a result of 

an OS event 

task1 
task2 
task3 
task4 

p1 2 3 4 
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Performance Results 

0

1

2

3

4

5

6

7

1 proc 2 proc 4 proc 8 proc

PVM
OpenMP

0

1

2

3

4

5

6

1 proc 2 proc 4 proc 8 proc

PVM
OpenMP

small data set medium data set 

Speedups of Seismic on an 8-processor system 

MPI 
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Programming Vector 
Architectures 

EE663, Spring 2012 Slide 107 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

Vector Instructions 

A vector instruction operates on a number of 
data elements at once. 
Example:   vadd va,vb,vc,32     
vector operation of length 32 on vector registers va,vb, and vc 
–  va,vb,vc can be  

  Special cpu registers or memory → classical 
supercomputers 

  Regular registers, subdivided into shorter partitions (e.g., 
64bit register split 8-way) → multi-media extensions 

–  The operations on the different vector elements 
can overlap → vector pipelining 

EE663, Spring 2012 Slide 108 
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Applications of Vector 
Operations 

  Science/engineering applications are typically 
regular with large loop iteration counts. 
This was ideal for classical supercomputers, which 

had long vectors (up to 256; vector pipeline startup 
was costly). 

  Graphics applications can exploit “multi-
media” register features and instruction sets. 

EE663, Spring 2012 Slide 109 
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DO i=1,n 
   A(i) = B(i)+C(i) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 

Basic Vector Transformation 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i-1) = D(i)**2 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
C(0:n-1)=D(1:n)**2 

Here, the triplet notation means vector operation. Notice that 
this is not necessarily the same meaning as the array notation 
supported by some languages. 

EE663, Spring 2012 Slide 110 
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DO i=1,n 
  A(i) = B(i)+C(i) 
  D(i) = A(i)+A(i-1) 
ENDDO 

DO i=1,n 
  A(i) = B(i)+C(i) 
ENDDO 
 
DO i=1,n 
  D(i) = A(i)+A(i-1) 
ENDDO 

A(1:n)=B(1:n)+C(1:n) 
D(1:n)=A(1:n)+A(0:n-1) 

dependence 

loop  
distribution 

vectorization 

Distribution and Vectorization  
The transformation done on the previous slide involves loop distribution. 
Loop distribution reorders computation and is thus  subject to  data 
dependence constraints. 

The transformation is not legal if there is 
a lexical-backward dependence: 

DO i=1,n 
   A(i) = B(i)+C(i) 
   C(i+1) = D(i)**2 
ENDDO 

loop-carried  
dependence Statement reordering may help 

resolve the problem. However, 
this is not possible if there is a 
dependence cycle. 

Slide 111 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

Vectorization Needs 
Expansion 

... as opposed to privatization 

DO i=1,n 
   t      =  A(i)+B(i) 
   C(i) =  t + t**2 
ENDDO 

DO i=1,n 
   T(i)  =  A(i)+B(i) 
   C(i) =  T(i) + T(i)**2 
ENDDO 

expansion 

T(1:n) = A(1:n)+B(1:n) 
C(1:n) = T(1:n)+T(1:n)**2 

vectorization 

EE663, Spring 2012 Slide 112 
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DO i=1,n 
   IF (A(i) < 0) A(i)=-A(i) 
ENDDO 

WHERE (A(1:n) < 0) A(1:n)=-A(1:n) 

conditional vectorization 

Conditional Vectorization 

EE663, Spring 2012 Slide 113 
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DO i=1,n 
  A(i) = B(i) 
ENDDO 

DO i1=1,n,32 
  DO i=i1,min(i1+31,n) 
      A(i) = B(i) 
  ENDDO 
ENDDO 

stripmining 

Stripmining for Vectorization 

EE663, Spring 2012 Slide 114 

Stripmining turns a single loop into a doubly-nested loop for 
two-level parallelism. It also needs to be done by the code-
generating compiler to split an operation into chunks of the 
available vector length. 
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Programming Accelerators  

EE663, Spring 2012 Slide 115 
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Examples of Accelerators 

116 

Intel MIC 
(Xeon Phi) 

Nvidia 
GPGPU 
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Why Accelerators? 

At a high level, 
special-purpose architectures can execute 
certain program patterns faster or with less 
energy than general-purpose CPUs. 

Examples:  
– vector machines 
– GRAPE (molecular-dynamics processor) 
– DSP 
– FPGA  117 
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Why Accelerators? 
More specifically 
  Heterogeneity as an opportunity 

1 fat processor for sequential code  
+ many lean cores for highly parallel code 

  Tradeoff:  fat core/large cache versus many of them 

  GPUs exist anyway, use them for computation as well 
  Energy argument 
  high bandwidth AND low (effective) latency for certain 

access patterns 

118 
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Accelerators Today 
  GPGPUs have accelerated many applications 
  Performance varies widely 
  Emphasis is on science/engineering applications 
  Fastest supercomputers use GPGPUs 
  Nvidia GPGPUs dominate 

–  key architecture features: SIMD and multithreading  
  Intel’s LRB did not become a product. However, MIC 

(Xeon Phi) has just entered the market. 
  Programming productivity is poor 

–  programmer needs to understand complex architecture 
–  new programming constructs and techniques 119 
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CUDA Architecture 

120 

CPU GPU 
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Programming Models 

 History:  
–  Explicit offloading and optimization: CUDA, 

OpenCL, OpenACC 
  Pure Shared Memory model:  

–  Compiler performs the translation (OpenMP 
research compiler) 

  Shared Memory plus directives:  
–  OpenACC, OpenMP 4.0, OpenMP (research 

compiler) 
 

121 
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Important Accelerator 
Programming Techniques 

  defining kernels for offloading 
  creating coalesced accesses (loop interchange, 

coalescing, data transpose) 
–  this is the most-important optimization (note, this was 

true for vector machines as well) 
  managing copy-in/out 
  data placement in accelerator memory hierarchy 
  defining thread block size 

122 
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Programming Complexity 
Comparison (Jacobi) 

OpenMP code 
 
float a[SIZE_2][SIZE_2]; 
float b[SIZE_2][SIZE_2]; 
int main (int argc, char *argv[]) { 
    int i, j, k; 
    for (k = 0; k < ITER; k++) { 
        #pragma omp parallel for private(i, j) 
        for (i = 1; i <= SIZE; i++)  
            for (j = 1; j <= SIZE; j++)  
                a[i][j] = (b[i - 1][j] + b[i + 1][j] + b[i][j - 1] + b[i][j + 1]) / 4.0f; 
        #pragma omp parallel for private(i, j) 
        for (i = 1; i <= SIZE; i++)  
            for (j = 1; j <= SIZE; j++)  
                b[i][j] = a[i][j]; 
    return 0; 
} 

CUDA code 
 
float a[SIZE_2][SIZE_2]; float b[SIZE_2][SIZE_2]; 
__global__ void main_kernel0(float a[SIZE_2][SIZE_2], float b[SIZE_2][SIZE_2]) { 
  int i,j;   int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));   int _gtid = (threadIdx.x+(_bid*blockDim.x)); 
  i=(_gtid+1); 
  if (i<=SIZE { 
    for (j=1; j<=SIZE j ++ ) 
      a[i][j]=(b[(i-1)][j]+b[(i+1)][j]+b[i][(j-1)]+b[i][(j+1)])/4.0F; 
  } 
} 
__global__ void main_kernel1(float a[SIZE_2][SIZE_2], float b[SIZE_2][SIZE_2]) { 
  int i,j;   int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));    int _gtid = (threadIdx.x+(_bid*blockDim.x)); 
  i=(_gtid+1); 
  if (i<=SIZE { 
    for (j=1; j<=SIZE j ++ ) 
      b[i][j]=a[i][j]; 
  } 
} 
int main(int argc, char * argv[]) { 
  int i,j,k;   float * gpu__a; float * gpu__b;  
  gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
  CUDA_SAFE_CALL(cudaMalloc(((void *  * )( & gpu__a)), gpuBytes)); 
  dim3 dimBlock0(BLOCK_SIZE, 1, 1);   dim3 dimGrid0(NUM_BLOCKS, 1, 1); 
  CUDA_SAFE_CALL(cudaMemcpy(gpu__a, a, gpuBytes, cudaMemcpyHostToDevice)); 
  gpuBytes=((SIZE_2*SIZE_2)*sizeof (float)); 
  CUDA_SAFE_CALL(cudaMalloc(((void *  * )( & gpu__b)), gpuBytes)); 
  CUDA_SAFE_CALL(cudaMemcpy(gpu__b, b, gpuBytes, cudaMemcpyHostToDevice)); 
  dim3 dimBlock1(BLOCK_SIZE, 1, 1);   dim3 dimGrid1(NUM_BLOCKS, 1, 1); 
  for (k=0; k<ITER; k ++ ) { 
    main_kernel0<<<dimGrid0, dimBlock0, 0, 0>>>((float (*)[SIZE_2])gpu__a, (float (*)[SIZE_2])gpu__b); 
    main_kernel1<<<dimGrid1, dimBlock1, 0, 0>>>((float (*)[SIZE_2)])gpu__a, (float (*)[SIZE_2])gpu__b); 
  } 
  gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
  CUDA_SAFE_CALL(cudaMemcpy(b, gpu__b, gpuBytes, cudaMemcpyDeviceToHost)); 
  CUDA_SAFE_CALL(cudaFree(gpu__b)); 
  gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
  CUDA_SAFE_CALL(cudaMemcpy(a, gpu__a, gpuBytes, cudaMemcpyDeviceToHost)); 
  CUDA_SAFE_CALL(cudaFree(gpu__a)); 
  fflush(stdout);   fflush(stderr);   return 0; 
} 
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OpenMP Version of Jacobi 
float a[SIZE_2][SIZE_2]; 
float b[SIZE_2][SIZE_2]; 
int main (int argc, char *argv[]) { 
    int i, j, k; 
    for (k = 0; k < ITER; k++) { 
        #pragma omp parallel for private(i, j) 
        for (i = 1; i <= SIZE; i++)  
            for (j = 1; j <= SIZE; j++)  
                a[i][j] = (b[i - 1][j] + b[i + 1][j] + b[i][j - 1] + b[i][j + 1]) / 4.0f; 
        #pragma omp parallel for private(i, j) 
        for (i = 1; i <= SIZE; i++)  
            for (j = 1; j <= SIZE; j++)  
                b[i][j] = a[i][j]; 
    return 0; 
} 
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CUDA Version of Jacobi 
 

int main(int argc, char * argv[]) { 
      int i,j,k;   float * gpu__a; float * gpu__b;  
      gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
      CUDA_SAFE_CALL(cudaMalloc(((void *  * )( & gpu__a)), gpuBytes)); 
      CUDA_SAFE_CALL(cudaMemcpy(gpu__a, a, gpuBytes, cudaMemcpyHostToDevice)); 
      gpuBytes=((SIZE_2*SIZE_2)*sizeof (float)); 
      CUDA_SAFE_CALL(cudaMalloc(((void *  * )( & gpu__b)), gpuBytes)); 
      CUDA_SAFE_CALL(cudaMemcpy(gpu__b, b, gpuBytes, cudaMemcpyHostToDevice)); 
      dim3 dimBlock0(BLOCK_SIZE, 1, 1);   dim3 dimGrid0(NUM_BLOCKS, 1, 1); 
      dim3 dimBlock1(BLOCK_SIZE, 1, 1);   dim3 dimGrid1(NUM_BLOCKS, 1, 1); 
      for (k=0; k<ITER; k ++ ) { 
          main_kernel0<<<dimGrid0, dimBlock0, 0, 0>>>((float (*)[SIZE_2])gpu__a,  
              (float (*)[SIZE_2])gpu__b); 
          main_kernel1<<<dimGrid1, dimBlock1, 0, 0>>>((float (*)[SIZE_2)])gpu__a,  
              (float (*)[SIZE_2])gpu__b); 
      } 
      gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
      CUDA_SAFE_CALL(cudaMemcpy(b, gpu__b, gpuBytes, cudaMemcpyDeviceToHost)); 
      gpuBytes=(SIZE_2*SIZE_2)*sizeof (float); 
      CUDA_SAFE_CALL(cudaMemcpy(a, gpu__a, gpuBytes, cudaMemcpyDeviceToHost)); 
      CUDA_SAFE_CALL(cudaFree(gpu__b)); 
      CUDA_SAFE_CALL(cudaFree(gpu__a)); 
      fflush(stdout);   fflush(stderr);   return 0; 
} 

GPU Memory Allocation and Data Transfer to GPU 

Data Transfer Back To CPU and GPU Memory Deallocation 

GPU Kernel Execution 
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Intra-Thread vs. Inter-Thread 
Locality 

  Intra-thread locality is beneficial to both OpenMP and CUDA model. 
  Inter-thread locality plays a critical role in CUDA model. 

Thread 0 Thread 1 

Cache 0 Cache 1 

0 4 8 12 16 20 
Global Memory 

Thread 0 Thread 1 Thread 2 Thread 3 

0 4 8 12 16 20 24 28 32 
Global Memory 

False –sharing Coalesced global memory access 
reduces overall latency 

Common CPU Memory Model CUDA Memory Model 
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Effective GPGPU Programming Techniques: 
Parallel Loop-Swap 

#pragma omp parallel for 
for(i=0; i< N; i++) 
      for(k=0; k<N; k++) 
            A[i][k] = B[i][k]; 
Input OpenMP code 
 
 
#pragma omp parallel for 

schedule(static, 1) 
for(k=0; k<N; k++) 
      for(i=0; i<N; i++) 
            A[i][k] = B[i][k]; 
Optimized OpenMP code 
 
 

T0 

i 

k

T1 
T2 
T3 

Thread ID 

Global Memory 

Memory access at time t 

T0 

i 

T1 T2 T3 Thread ID 

Global Memory 

k

Memory 
access 
at time t 
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Effective GPGPU Programming Techniques: 
Loop Collapsing 

#pragma omp parallel for 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
 Input OpenMP code 
 
#pragma omp parallel 
#pragma omp for collapse(2) 

schedule(static, 1) 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
Optimized OpenMP code 
 
 

T0 
T1 
T2 
T3 

Thread ID 

i 

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7 

Global Memory 

Global Memory 
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Effective GPGPU Programming Techniques: 
Loop Collapsing 

#pragma omp parallel for 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
 Input OpenMP code 
 
#pragma omp parallel 
#pragma omp for collapse(2) 

schedule(static, 1) 
for(i=0; i<n_rows; i++) 
      for(k=rptr[i]; k<rptr[i+1]; k++) 
            w[i] += A[k]*p[col[k]]; 
Optimized OpenMP code 
 
 

T0 
T1 
T2 
T3 

Thread ID 

i 

k

T0 T1 T2 T3 Thread ID T4 T5 T6 T7 

Global Memory 

Global Memory 

// Collapsed loop 

If( tid1 < rptr[n_rows])  

    l_w[tid1] = A[tid1]*p[col[tid1]]; 

 

// Reduction loop 

If( tid2 < n_rows )  

    for( k=rptr[tid2]; k<rptr[tid2+1]; k++ ) 

        w[tid2] += l_w[k]; 

(c)  GPU code 
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Effective GPGPU Programming Techniques: 

Matrix-Transpose 

#pragma omp parallel for  
 schedule(static, 1) 
 transpose(A)1 

for(i=0; i< N; i++) { 
      for(k=0; k<M; k++) 
            … = A[i,k]; 
} 
 
 
 
1OpenMP standard does not include a transpose directive 

T0 

i 

k

T1 
T2 
T3 

Thread ID 

Global Memory 

Memory access at time t 

T0 

i 

T1 T2 T3 Thread ID 

Global Memory 

k

Memory 
access 
at time t 

A 
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Effective GPGPU Programming Techniques: 

Managing Copy-in/out 
1.  Eliminate copy-out of data that are not live out 
2.  Leave data that is needed in future kernel 

invocations in the device memory 
–  eliminate copy-out if not needed on the CPU side 

3.  Narrow the copy-in data range to the minimum 
needed 

4.  Copy-in early (overlap copy-in with execution of 
previous kernel) 

5.  Pipeline copy-in and execution within same kernel. 

Note that techniques 2,4,5 increase the demand on device memory 
131 
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Choosing a threadblock size <max may be preferable. 
  Shared resources: fewer threads incur fewer resource conflicts 
  Multithreading: If a thread (block) stalls on a memory transfer, a 

different thread (block) becomes active. 

132 

Effective GPGPU Programming Techniques: 

Setting Thread Block Size 

data access  3t 
 
computation   t 

thread 
≥3 thread blocks are needed, in 
this example, to overcome the 
memory latency 

for i=1,n 
   … = a[i] 

there can be max n (logical) 
threads, however: 

Note that different vendors use the terms thread and block differently 
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Effective GPGPU Programming Techniques: 
Memory Management 

 Accelerators may not provide virtual 
memory management  

 Blocking/stripmining may be needed to 
fit data within available memory space 

 Side benefit of blocking: 

133 

overlapping copy-in/out 
and computation 
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134 

SMP Programming Errors 

 Shared memory parallel programming is 
a mixed bag: 
–  It saves the programmer from having to 

map data onto multiple processors.  In this 
sense, its much easier. 

–  It opens up a range of new errors coming 
from unanticipated shared resource 
conflicts. 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

135 

2 major SMP errors 

 Race Conditions 
 The outcome of a program depends on the 

detailed timing of the threads in the team. 

 Deadlock 
 Threads lock up waiting on a locked resource 

that will never become free. 

 Livelock 
 A termination condition is never reached 
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Race Conditions 
  The result varies 

unpredictably based on 
detailed order of 
execution for each 
section. 

  Wrong answers 
produced without 
warning!  

C$OMP PARALLEL SECTIONS 
       A = B + C 
C$OMP SECTION 
       B = A + C 
C$OMP SECTION 
       C = B + A 
C$OMP END PARALLEL SECTIONS  



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

137 

Race Conditions: 
A complicated (silly?) solution 

  In this example, we 
choose the 
assignments to occur 
in the order A, B, C. 
–  ICOUNT forces this 

order. 
–  FLUSH so each thread 

sees updates to 
ICOUNT - NOTE: you 
need the flush on each 
read and each write.  

        ICOUNT = 0 
C$OMP PARALLEL SECTIONS 
         A = B + C 
         ICOUNT = 1 
C$OMP FLUSH ICOUNT 
C$OMP SECTION 
1000 CONTINUE 
C$OMP FLUSH ICOUNT 
         IF(ICOUNT .LT. 1) GO TO 1000 
         B = A + C 
         ICOUNT = 2 
C$OMP FLUSH ICOUNT 
C$OMP SECTION 
2000  CONTINUE 
C$OMP FLUSH ICOUNT 
          IF(ICOUNT .LT. 2) GO TO 2000 
          C = B + A 
C$OMP END PARALLEL SECTIONS  
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A More Subtile Race Condition 
  The result varies 

unpredictably because 
access to shared 
variable  TMP is not 
protected. 

  Wrong answers 
produced without 
warning! 

  The user probably 
wanted to make TMP 
private.  

C$OMP PARALLEL SHARED (X) 
C$OMP& PRIVATE(ID)  
  
C$OMP PARALLEL DO REDUCTION(+:X) 
       DO 100 I=1,100 
              TMP = WORK(I) 
              X = X + TMP 
100   CONTINUE 
C$OMP END DO 
 
C$OMP END PARALLEL   
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Avoiding Race Conditions 
  Easiest solution: don’t access any variable that is 

written by another parallel thread. 
–  this is always the case for fully parallel loops 

  More complicated: if data dependences are 
unavoidable, synchronize them properly.  
–  Be aware that you reduce the performance 

  Avoid: creating your own synchronization by “waiting 
for a flag set by the other thread”. 
–  use provided synchronization primitives instead 

  (Desirable) race conditions seen in real programs: 
–  parallel shuffle 
–  parallel search 
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Deadlock 
  If A is locked in the first 

section and the if statement 
branches around the unset 
lock, threads running the 
other sections deadlock 
waiting for the lock to be 
released. 

  Make sure you release your 
locks. Always, even in error 
situations! 

       CALL OMP_INIT_LOCK (LCKA) 
C$OMP PARALLEL SECTIONS 
C$OMP SECTION 
       CALL OMP_SET_LOCK(LCKA) 
       IVAL = DOWORK() 
       IF (IVAL .GT. TOL) THEN 
             CALL ERROR (IVAL) 
       ELSE  
            CALL OMP_UNSET_LOCK (LCKA) 
       ENDIF 
ENDIF 
C$OMP SECTION 
       CALL OMP_SET_LOCK(LCKA) 
       CALL USE_B_and_A (RES) 
       CALL OMP_UNSET_LOCK(LCKA) 
C$OMP END SECTIONS 
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Livelock 
  This shows a race 

condition and a livelock. 
  If the square of RES is 

never smaller than TOL, 
the program spins 
endlessly in Livelock. 

C$OMP PARALLEL PRIVATE(ID) 
          ID = OMP_GET_THREAD_NUM()   
          N  = OMP_GET_NUM_THREADS() 
1000  CONTINUE  
              PHASES[ID] = UPDATE(U, ID) 
C$OMP SINGLE 
                     RES = MATCH (PHASES, N) 
C$OMP END SINGLE 
              IF (RES*RES .LT. TOL) GO TO 2000 
              GO TO 1000 
2000  CONTINUE 
C$OMP END PARALLEL 
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Livelock 
  Solution:  

–  Fix the race with a barrier 
before the single. This 
may fix the MATCH 
operation and fix the 
livelock error. 

–  Decide on a maximum 
number of iterations, and 
use a loop with that 
number rather than an 
infinite loop. 

          ICOUNT = 0 
C$OMP PARALLEL PRIVATE (ID) 
          ID = OMP_GET_THREAD_NUM()   
          N  = OMP_GET_NUM_THREADS() 
1000  CONTINUE  
              PHASES[ID] = UPDATE(U, ID) 
C$OMP BARRIER 
C$OMP SINGLE 
                     RES = MATCH (PHASES, N) 
                     ICOUNT = ICOUNT + 1 
C$OMP END SINGLE 
              IF (RES*RES .LT. TOL) GO TO 2000 
              IF (ICOUNT .GT. MAX) GO TO 2000 
              GO TO 1000 
2000  CONTINUE 
C$OMP END PARALLEL 
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SMP (OpenMP) Error Advice 

  Are you using threadsafe libraries? 
  I/O inside a parallel region can interleave 

unpredictably.  
  Make sure you understand what your 

constructors are doing with private objects. 
  Watch for private variables masking globals. 
  Understand when shared memory is 

coherent.  When in doubt, use FLUSH.  
   NOWAIT removes implied barriers. 
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Navigating through the Danger 
Zones 

 Option 1: Analyze your code to make 
sure every semantically permitted 
interleaving of the threads yields the 
correct results. 
– This can be prohibitively difficult due to the 

explosion of possible interleavings. 
– Tools like Intel’s Thread Checker (Assure) 

can help. 
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Navigating through the 
Danger Zones 

 Option 2: Write SMP code that  is 
portable and equivalent to the 
sequential form. 
– Use a safe subset of OpenMP. 
– Follow a set of “rules” for Sequential 

Equivalence. 
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Portable Sequential 
Equivalence 

 What is Portable Sequential 
Equivalence (PSE)? 

 A program is sequentially equivalent if its 
results are the same with one thread and many 
threads. 

 For a program to be portable (i.e. runs the 
same on  different platforms/compilers) it must 
execute identically when the OpenMP 
constructs are used or ignored.   
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Portable Sequential 
Equivalence 

 Advantages of PSE 
 A PSE program can run on a wide range of 

hardware and with different compilers - 
minimizes software development costs. 

 A PSE program can be tested and debugged in 
serial mode with off-the-shelf tools - even if 
they don’t support OpenMP. 
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2 Forms of Sequential 
Equivalence 

 Two forms of Sequential equivalence 
based on what you mean by the phrase 
“equivalent to the single threaded 
execution”: 

 Strong SE: bitwise identical results. 
 Weak SE:  equivalent mathematically but due 

to quirks of floating point arithmetic, not bitwise 
identical.  
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Strong Sequential Equivalence: 
Rules 

– Control data scope with the base language 
 Avoid the data scope clauses, except… 
 Only use private for scratch variables local to a 

block (e.g. temporaries or loop control variables) 
whose global initialization don’t matter. 

– Locate all cases where a shared variable 
written by one thread is accessesd (read or 
written) by another threads. 
 All accesses to the variable must be protected. 
  If multiple threads combine results into a single 

value, enforce sequential order. 
 Do not use the reduction clause. 



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

150 

Strong Sequential 
Equivalence: example 

  Everything is shared except 
I and TMP.  These can be 
private since they are not 
initialized and they are 
unused outside the loop. 

  The summation into RES 
occurs in the sequential 
order so the result from the 
program is bitwise 
compatible with the 
sequential program. 

  Problem: Can be inefficient 
if threads finish in an order 
that’s greatly different from 
the sequential order. 

C$OMP PARALLEL  PRIVATE(I, TMP)  
 
C$OMP DO  ORDERED 
         DO 100 I=1,NDIM 
               TMP =ALG_KERNEL(I) 
C$OMP ORDERED 
                CALL COMBINE (TMP, RES) 
C$OMP END ORDERED 
100   CONTINUE  
 
C$OMP END PARALLEL 
               



R. Eigenmann, Programming Parallel Machines   ECE 563 Spring 2013 

151 

Weak Sequential equivalence 
  For weak sequential equivalence only mathematically 

valid constraints are enforced. 
  Computer floating point arithmetic is not associative and not 

commutative. 
  In most cases, no particular grouping of floating point 

operations is mathematically preferred so why take a 
performance hit by forcing the sequential order? 

–  In most cases, if you need a particular grouping of floating 
point operations, you have a bad algorithm. 

  How do you write a program that is portable and 
satisfies weak sequential equivalence? 
–  Follow the same rules as the strong case, but relax 

sequential ordering constraints. 
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Weak equivalence: example 
C$OMP PARALLEL  PRIVATE(I, TMP)  
C$OMP DO 
         DO 100 I=1,NDIM 
               TMP =ALG_KERNEL(I) 
C$OMP CRITICAL 
                CALL COMBINE (TMP, RES) 
C$OMP END CRITICAL 
100   CONTINUE  
 
C$OMP END PARALLEL 
               

  The summation into 
RES occurs one thread 
at a time, but in any 
order so the result is not 
bitwise compatible with 
the sequential program. 

  Much more efficient, but 
some users get upset 
when low order bits vary 
between program runs. 
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Sequential Equivalence isn’t a Silver 
Bullet  

  This program follows 
the weak PSE rules, but 
its still wrong.  

  In this example, RAND() 
may not be thread safe.  
Even if it is, the pseudo-
random sequences 
might overlap thereby 
throwing  off the basic 
statistics. 

C$OMP PARALLEL   
C$OMP& PRIVATE(I, ID, TMP, RVAL) 
        ID = OMP_GET_THREAD_NUM()     
         N  = OMP_GET_NUM_THREADS()     
        RVAL = RAND ( ID ) 
C$OMP DO  
        DO 100 I=1,NDIM 
               RVAL = RAND (RVAL) 
               TMP =RAND_ALG_KERNEL(RVAL) 
C$OMP CRITICAL 
                CALL COMBINE (TMP, RES) 
C$OMP END CRITICAL 
100   CONTINUE  
C$OMP END PARALLEL 
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Map Reduce 

 Wikipedia: 
MapReduce is  
–  a programming model for processing large data sets, and 
–  the name of an implementation of the model by Google. 
MapReduce is typically used to do distributed computing on 
clusters of computers. 
 
MapReduce libraries have been written in many 
programming languages. A popular, free implementation is 
Apache Hadoop. 
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Why MapReduce? 
“MapReduce provides regular programmers the ability 
to produce parallel distributed programs much more 
easily, by requiring them to write only the simpler Map() 
and Reduce() functions, which focus on the logic of the 
specific problem at hand”  

However,  
you need to have a good understanding how map, 
reduce, and the overall system interact. 
 
Many problems can be expressed as such a two-step 
algorithm 
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Map step 
“The master node takes the input, divides it into smaller sub-
problems, and distributes them to worker nodes. A worker node 
may do this again in turn, leading to a multi-level tree structure. The 
worker node processes the smaller problem, and passes the 
answer back to its master node.” 

–  Map is performed fully parallel on each subproblem 
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Reduce step 
“ The master node then collects the answers to all the sub-
problems and combines them in some way to form the output – the 
answer to the problem it was originally trying to solve.” 

–  Reduce is not fully parallel, but may be expressed as a sequence of 
parallel combine steps. 
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A Simple Example: 
Parallel Reduction Expressed as 

MapReduce 
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  Problem: sum all n elements an an array 
  Master: splits array into #processor parts; calls map 

for each processor 
  Map: sums all elements or the assigned array part; 

returns partial sum 
  Reduce: receives partial sums; returns their sum 

Processors can assume the role of Master (e.g. if the 
assigned part is larger than a threshold) and engage 
additional processors, in turn.  

=>  leads to a combining tree for the summation. 
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A 5-step Process 
1.  Prepare the Map() input – the "MapReduce system" designates Map 

processors, assigns the K1 input key value each processor would work 
on, and provides that processor with all the input data associated with 
that key value. 

2.  Run the user-provided Map() code – Map() is run exactly once for each 
K1 key value, generating output organized by key values K2. 

3.  "Shuffle" the Map output to the Reduce processors – the MapReduce 
system designates Reduce processors, assigns the K2 key value each 
processor would work on, and provides that processor with all the Map-
generated data associated with that key value. 

4.  Run the user-provided Reduce() code – Reduce() is run exactly once 
for each K2 key value produced by the Map step. 

5.  Produce the final output – the MapReduce system collects all the 
Reduce output, and sorts it by K2 to produce the final outcome. 
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MAP 

REDUCE 
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function Map(String name, String document):   
     count each word in the document  
     return the map < word, #occurrences > 
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function Reduce(String word, List #occurrences): 

     sum = Σ #occurrences 
     return < word, sum > 
 
 
 

•  Map returns multiple results, each annotated with a key. In 
our example, the key identifies a specific word. 

•  The shuffle function combines the values (#occurrences) 
for each key returned by a map function into a list and calls 
Reduce(key,list) 
•  shuffle can take a substantial amount of time. It is 

implemented by the system; the user only needs to 
write Map and Reduce. 

list 

A More Advanced Example: 
Word Count 
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Other MapReduce Problems/
Applications 

  searching 
  sorting 
  web link-graph reversal 
  web access log stats 
  inverted index construction 
  document clustering 
  machine learning 
   statistical machine translation 

MapReduce has also been demonstrated on some linear algebra 
problems, such as matrix multiply 

“Basically wherever you see linear algebra (matrix/vector operations) you can 
apply Map Reduce” 
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OTHER PROGRAMMING 
MODELS, LANGUAGES, 
CONCEPTS 

162 
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Data Flow 
Parallelism is derived from the availability of data in a data 
flow graph. 
  Joule (1996): 

–  Concurrent dataflow programming language for building 
distributed applications. The order of statements within a block is 
irrelevant to the operation of th eblock. Statements are executed 
whenever possible, based on their inputs. Everything in Joule 
happens by sending messages. There is no control flow. Instead, 
the programmer describes the flow of data, making it a data flow 
programming language. 

  SISAL (1993): 
–  Uses and implements single-assignment concepts. Produces a 

data flow graph. (Single assignment removes anti and output 
dependences, which exposes maximum parallelism) 

  StarS (2009): 
–  Hierarchical task-based programming with StarSs, Badia, Ayguade, 

Labarta (2009) 163 
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Global Address Space 
Languages (GAS) 

  UPC, co-array Fortran, HPF 
  Languages for distributed-memory machines 
  The user sees a shared address space 
  There are constructs for data distribution. 

They can be explicit, user-provided data-
distribution directives or array dimensions that 
indicate the processor ID. 

  Compilers translate the GAS program into a 
message-passing form. 
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Non-Blocking Operations 

  Fundamental mechanism for overlapping 
communication and (multiple) operations. 

  If b is a simple value, this is essentially the 
same as prefetch 

  If b is an operation, this involves the 
spawning of a parallel task 
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a := b 
… 
synch()  

the computation of the value b and transfer to a 
is initiated, and completed at the synch() point. It 
overlaps with the execution of the “…” 
statements. 
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CSP – Communicating Sequential 
Processes (Hoare, 1978) 

 one of the earliest concepts for 
expressing parallel activities 

 center is the process 
   synchronization and communication 

constructs are very important 
–   semaphores, monitors, locks, etc. 

 OCCAM/Transputer 
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BSP – Block Synchronous 
Parallelism 

 Structuring a parallel computation into 
phases of full parallelism followed by 
communcation phases. 
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time 
compute 

communicate 

compute 

communicate 
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Parallel models differ in the  primary 
concerns they require the user to deal with 

  data flow: focus on needed and produced 
data by activities 

  control flow: how control flows and transfers 
–   focus on starting and  ending  parallel activities 

  control transfer: focus on how cpu resources 
are assigned to activities 

  messaging: focus on communication (and 
implied synchronization) between  parallel 
activities 
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High-level Problem Classes 

  Fixed problem to be solved in shortest 
possible time.   
–  HPC applications 

  On-demand services to be made available on 
a continual basis.   
–  Operating systems, internet services  

  Continuous data streams to be processed.   
–  Image processing  
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Wikipedia: 
Concurrent and parallel programming languages 

  Actor Model 
  Coordination Languages 
  CSP-based 
  Dataflow 
  Distributed Event-driven and hardware description 
  Functional 
  GPU languages 
  Locic programming 
  Multi-threaded 
  Object oriented 
  PGAS 
  Unsorted 
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Wikipedia: 
Parallel programming models 

  Process interaction 
  Shared memory 
  Message passing 
  Implicit parallelism 
  Problem decomposition 
  Task parallelism 
  Data parallelism 
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