Lec6

Monday, January 20, 2020 10:17 AM

Main results - 20min

Monday, January 14, 2008 5:22 PM

More specifically, model earlier tollowing the muloipanh

xmitted signal ETe jw(+ = SG)

k-th path $a_k E_T e^{j\omega_c t - \phi_K}$

Both ax, &x are stochastic processes.

Total received signal

 $a(t) = E_T \sum_{k} a_k e^{j(\omega_c t - \phi_k)}$

As in 2-ray model, the phase randomness dominates

Two components for \$k:

1 travel distance

Different paths travel different distance, which leads to dispersion in the time-shift (or delay) The

 $\Rightarrow Q_k = W_c T_k = 2\pi f_c T_k$

Define the delay-spread as the difference

in delay between the first part & the last part

Typical values for delay-spread: 0.2 ~ 0.5 psec in submosen areas 3 ~ 8 psec in urban areas

The effect of this time-despersion will be manifested by toepnencyselectivity, since different
tregnency-component sees
different amount of phase shift.

2+ also leads to inter-symbol interference

Doppler effect leads to a frequency - shift $f_{K} = \frac{V \cos \beta_{K}}{\lambda}$

 $\Rightarrow \omega_{r}t = 2xt_{r}t = 2x - \frac{v \cos \beta_{k}}{t}$

$$\Rightarrow \omega_k t = 2z f_k t = 2z \frac{v \cos \beta_k}{\lambda} t.$$

Different paths can have different to due to angle of arrival.

Maximum doppler shift is given by $f_m = \frac{\vee}{2}$

e.g. V = |vokm/hr| = 28 m/s $fc = 16Hz \Rightarrow \lambda = 0.3 \text{ m}$ fm = 90 Hzphase chaye by $22 \text{ every } \frac{1}{90} \text{ sec}$ if $v = 0./m/s \rightarrow fm = 0.33 \text{ Hz}$ if $fc = 3.06 \text{ Hz} \Rightarrow \lambda = 0.0 \text{ m}$, v = 0./m/sfm = 10 Hz

The effect of this doppler shift will be manifested by timeselectivity, since the value of the phase shift changes in time.

In summay:

- Delay spread determines the frequency-

- Delay spread determines the frequencyselectivity of the channel
- Doppler shift determines the vate of fading in time.

Sketch of the main intrition:

As a rough estimate, consider the case when Tk & fk are deterministic (non-random)

Effect of Tk:

Consider two trephency component to 2 fet est

The phase difference (of two pashs) will vary by 22 st. Tk at these two trequencies.

It 22 of 7k = 7, significant varietions of the fading levels will be observed by the two frequency components

 (\Rightarrow) $=\frac{1}{2\pi}$ coherenent bandwidth

It determines the frequency-selectivity of the channel. It signed BW B> st, will experience freq-selective channel. Effect of fx Consider two time instants t, trot

The phase difference (of two pashs) will vary by 22 fx st at these two time instants,

If $2zf_k \Rightarrow t = zi$, significant variations of the tading levels will be observed at these times.

It determines the time-selectivity (or rate of fading)

When fx, Ticare random, the correct approach is to study correlation in toe meny & time

t, t+of
+, ++ot

Pa(st, sf) - correlation coefficient as a function of st & st. See Schwartz ch 2.5, in particular (2.46) 1 Delay spread Tow - standard deviation of Tk Coherent bw: of = 122 Tan 2+ B> 1/27 Tan, toeg-selective fading € Ts < 27 Tav \$ 6 Tav Inter-symbol interference occurs ushen the symbol duration is less than 6 times of the delay spread. Ts B< 122 Tow flat tading B>> 22Taw (27Taw wide-band signal different pash can be individually resolved (in COMA)

like "echos" (2) Doppler shift - fm: max doppler shift $f_m = \frac{N}{\lambda}$ Conerence time: $\delta t = \frac{9}{8\omega m} = \frac{9}{16z + m} \approx 0.18/f_m$ If $T_0 > \Delta T = \frac{1}{5.6 fm}$, distortion within duration of a block occurs - time-selective fadig Summay fory-selective flat Elmo time-selective (fzot) Depending on the value of the coherent by & coherent tome,

the channel can tall into one of these four catogories

Summary

Thursday, January 28, 2010 9:55 AM

> U. L-0.5/15 Delay Spread: Tav 3-8ps Coherent bandwith: Sf = 1 227av

> > frequency

flat

freg-selective
B>of (3 7s < 227av

Inter-symbol interference

S/v

(fine-selective)

Toot

Poppler shift (velocity)

 $\int_{m} = \frac{v}{\lambda}$

Coherent time $St = \frac{9}{162 \text{ fm}} = \frac{0.18}{\text{fm}}$

Example - 10min

Tuesday, January 15, 2008

Frequency-selective versus flat:

1) Deta rate 10kbps,

Assuming binary modulation

B = lokth $\overline{ls} = \overline{B} = o./msec$

Condition for frequency-selective tadiy delay spread > = 0.016 msec

unlikely even in urban environment (de lay spread 3-8 µsec)

=> flat-fading

(2) Data rate 200kbps, B=200kbz

reed

delay spread > \frac{7}{27} = 0.8 \text{usec}

=) frequency-selective teding

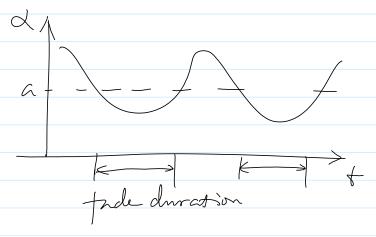
- In general, larger B and shorter T_s are more likely to experience frequency selective fading.
- Where does OFDM stand?

$$V = |vokm/hr| = 28 \text{ m/s}$$

$$f_c = |GHz| \Rightarrow \lambda = 0.3 \text{ m}$$

$$f_m = \frac{V}{\lambda} = 90 \text{ kz}$$

$$f_{m} = \frac{x}{x} = 10$$


$$0.18/f_{m} = 0.018s$$

- In general, larger velocity and higher frequency band are more likely to experience fast fading.

Fade duration - 5min

Tuesday, January 15, 2008 5:15 PM

- The amount of time the multipath fading component & is below a particular level a.

" deep tode"

- Closely related to coherent time

- determined by doppler shoft.

See Schwartz Chr.4

$$T_f = \frac{e^2 - 1}{f + m \sqrt{2} x}$$

where
$$f_m = \frac{1}{2} is doppler shift$$

the fading level we are interested in.

Example: V= 100 km/hr = 25 m/sec

$$fc = 16Hz, \quad \lambda = 0.3 \text{ m}$$

$$fm = \frac{\nu}{\lambda} = 90 \text{ Hz}$$

$$2f \quad \ell = 1, \quad 7f = \frac{0.7}{fm} = 8 \text{ msec}$$

$$\ell = 0.3 \quad 7f = 1 \text{ msec}$$

$$2f \quad v = \frac{1}{4} \text{ msec}$$

How to deal with fading? - 10min

Tuesday, January 15, 2008

Or, is fading a good thing, or a bad thing?

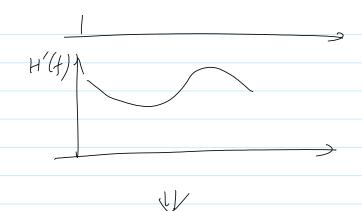
As we discussed at the introduction, you can either

- 1 do nothing
- (b) work against feding
- 1) exploit fading : diversity

General fradig Mitigation techniques

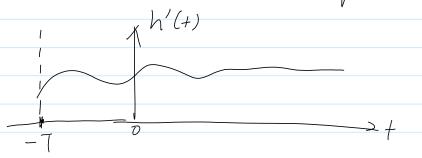
- Power constrol

- god for slow fadig


- Repetition/coding Interleaving

- good for fast-fadig

- Egnalization

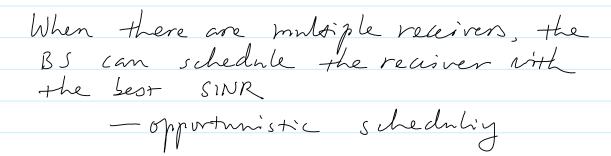

- for freq-selective charmels

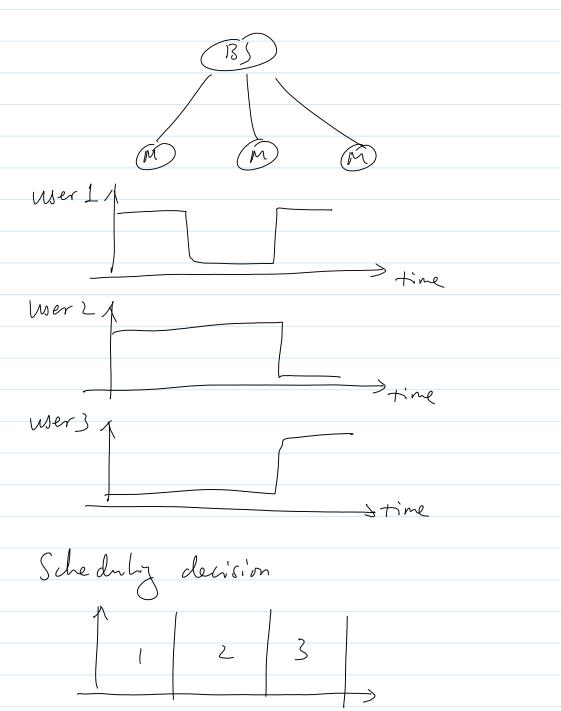
11///11

H4)H'4)=C

H'(f) may correspond to non-canal impulse response

- either unrealizable - or need large time delay


Special techniques to address a particular type of tadiy -> (3)


- Rake receiver
- OFDM
- Opportunistic Schednling
- MIMO

Opportunistic scheduling

Wednesday, January 16, 2008

3.55 PM

	Improves overall data throughput
	However, this also increases the delay for the poor user.
	Good if the coherence time is larger than the time to estimate the channel condition, but shorter than the delay that the application can tolerate.
(45)	

3:51 PM

In order to combat frequency selective fading, OFDM transmits data simultaneously over multiple namon-band carrier frequencies that are closely apart.

Each carrier freg faces a flat channel. ([wer symbol] rate - smaller signal distortion / 252

OFOMA schedules date un bester sub-carrier