Lec31

Thursday, April 2, 2020 5:19 PM

Wireless LAN - 5min

Thursday, January 17, 2008 5:17 PM

Wireless LAN starts as a way to provide high-spred data service for computers wire less by and cost effectively.

- use unlicensed spectrum

 2.46 band (2.4-2.48356)

 56 band (5.725-5.8506)

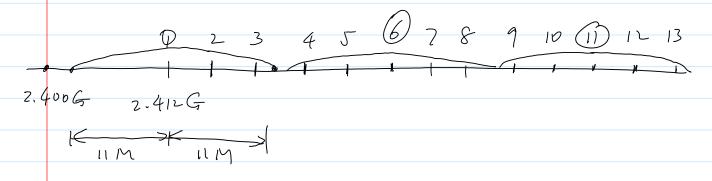
 lower cost

 flixible set up
- there are other systems that also operates on the same band
 - blue tooth - cord less phone.
- constraint on maximum power
 spectrum density that can be
 transmitted
- Use some from of spread-spectrum technique to tolerate other devices that use the same band
- Adaptive rates based on channel

condition & interference levels
,
We will to cus on 802-11 tamily of
We will to cus on 8v2-11 family of Standards
802-11 1-2M bys (
802-11 1-2M bps on 2.46 802-116 5.52 11M bps on 2.46 802-116 hp to J4M bps
802.11g lip to J414 bps
82.11a hp to 54Mbps on 56 band. 822.11n hp to 150Mbps They are different physical layer technologies but identical medium access technologies.
812.11n Wp to 150M 6ps
They are different physical layer
technologies but identical medium
access technologies.

Channels - 5min

Thursday, January 17, 2008


5:35 PM

Channel Ilan at 2.46

The whole Sand is said to consist of 13 channels.

Channel 1 has a center freq of 2.412 E, and 5w of 22 MHz

Channel 2 has a center took of 22MHz and so on.

Channels can overlap. Overall, they cover the 2.4 ~ 2.483 & band

In 802.11, a radio can only work on I channel at a time

- avoid interference from other dences (even other wireless LANS) - maximum 3 non-overlaping channels can be used at the same time

Physical layer - 10min

Thursday, January 17, 2008

802.11 (legacy)

- 1M, 2M Sps

- Symbol rate 1M per second

- use either BPSK or QPSK depending on the interference level. - use PSSS (Direct Segnence Spread

Spectorm in order to tolerate

high level of interference from other devices.

- the spreading code is fixed

11-chip Barker code sequence +1,-1,+1,+1,-1,+1,+1,+1,-1,-1

Chip rate: 11M per second

DSSS is not used as a multipleaccess one chamism among wers

- wed to combat interference from other devices lusing the unlicensed

802.11b.

- Add higher rates J.J.Mbps & 11Mbps

- Use complementary code keying

(CCK). See \$406 in Schwartz

- different way of spreading

- achieve higher data rate

within the same 22MHz

channel, when the channel

condition is good.

- robust to multipath fading

(anto correlation is zero

everywhere except at the

zero shift)

802.118:

- add more rates, up to 54Mbps

- uses OFDM

52 x 312.5 kHz subcarriers

cover 16.6 MHz Sand

48 subcarriers for data

4 for pilot.

- adapt data rate by different when whene based on SINR.

See 9 410 Table [2.] in Johnartz.

Table 1.Modulation Techniques

Data Rate (Mbps)	Modulation	Coding Rate	Coded bits per subcarrier	Coded bits per OFDM symbol	Data bits per OFDM symbol
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	16-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

802.11 physical layers have the typical features of a broadband wire too system.

- wide-band signal

- special considerations for multipath

tading

- adaptive coding k modulations

- variable toansmission power.

(need to be careful of the

consequence when we discuss

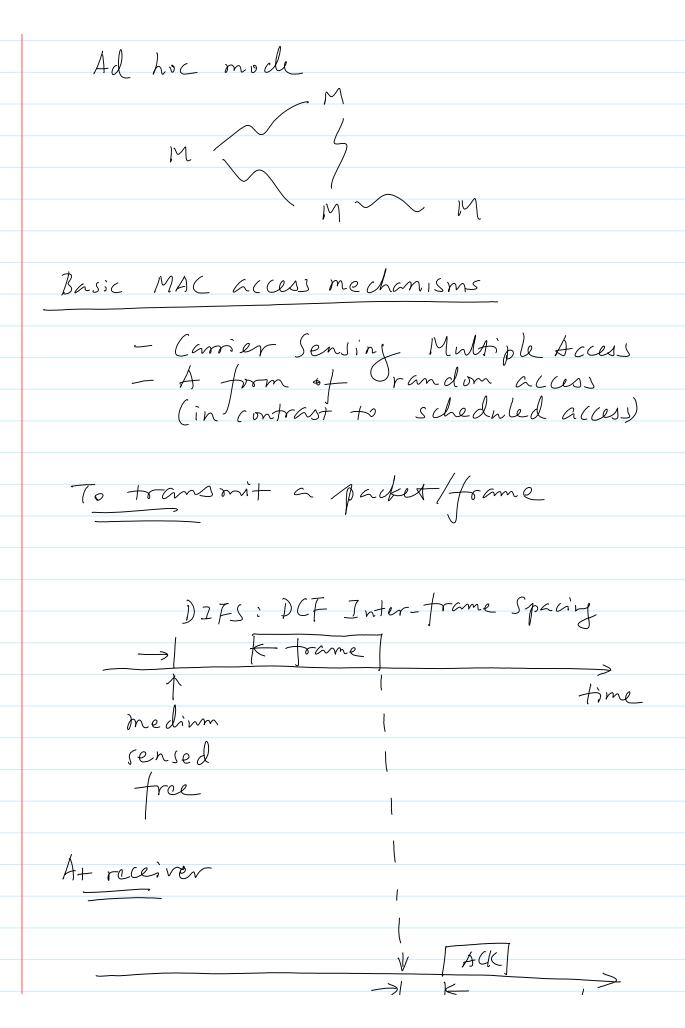
the MAC layer).

Two modes of operation

D Infrastructure mode

wired backbone

AP Access Point


M M M

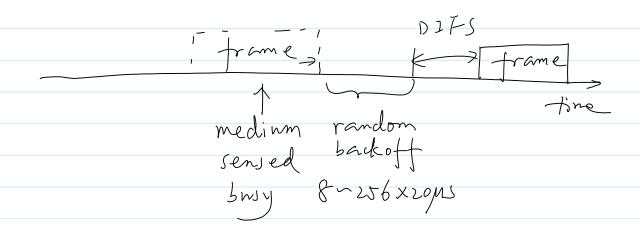
DS (distrobution system): interconnection network to from one logical network (ESS: extended service set) based on several BSS.

BSS (basic service set): group of stations using the same radio frequency or governed by the same AP.

AP (access point): Station integrated into the wireless LAN and the distribution system.

Ad hoc mode

V [AUK]


The stime

SIFS:

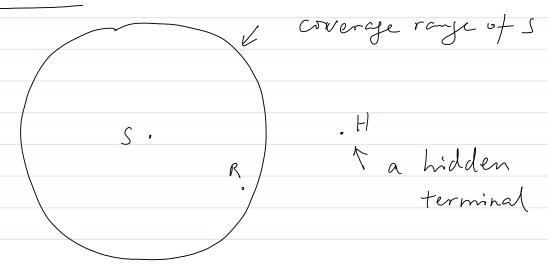
Short IFS

10MS

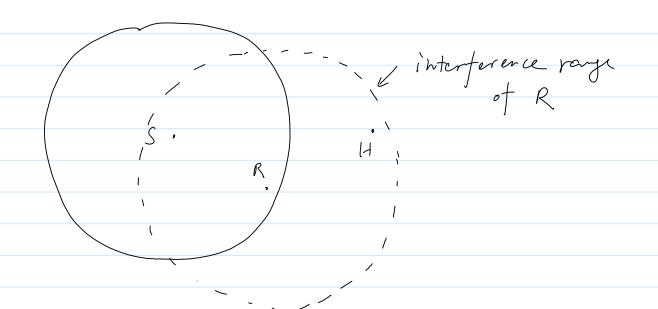
Other transmitting node

Note: $D2FS = S2FS + 2 \times 20 \text{ MS} = 50 \text{ MS}$

02FS > S2FS + ACK =) give priority to sek.


The above procedure is the same as
Themet (a vireline vandom access
protocol).

In exhernet, all stations can sense a busy channel.

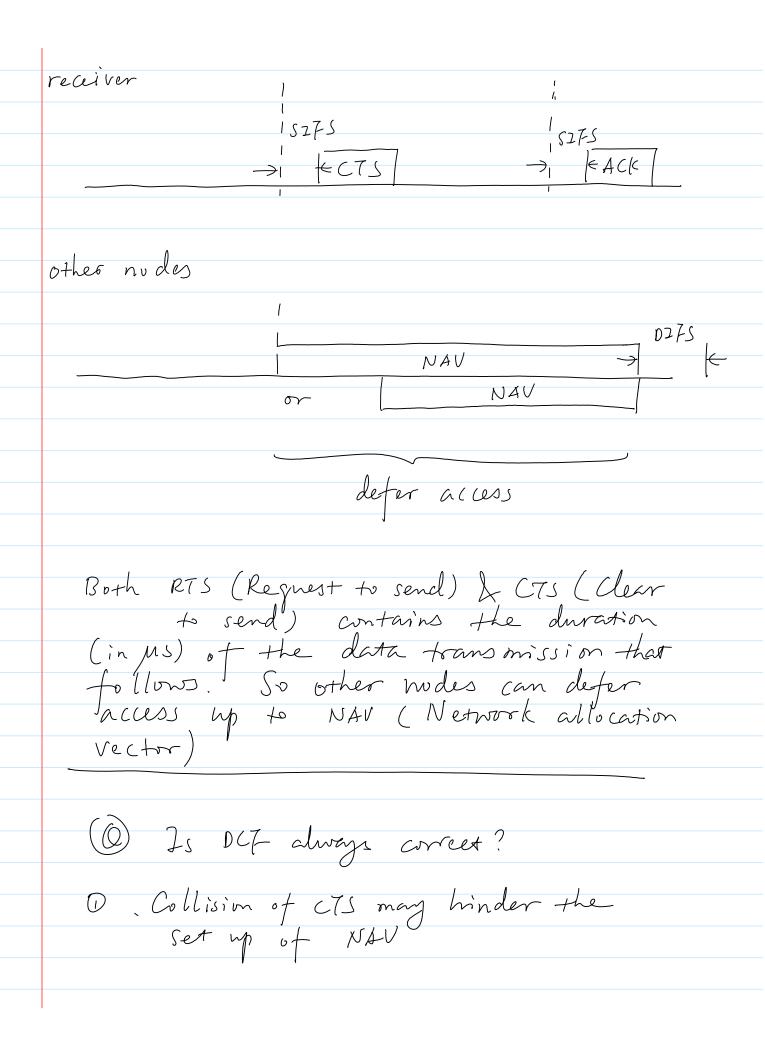

However, in WLAN, stations can only sense on-gring transmission if they are close to the transmitter

3 hidden-terminal ymblem

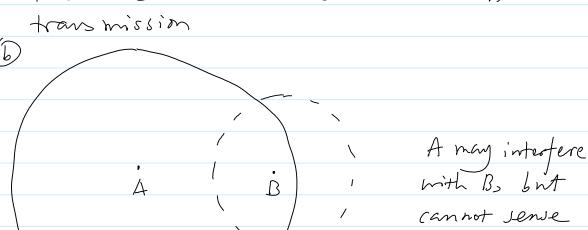
The hidden -terminal problem

H may interfere with R but it didn't sense the transmission of S.

Both the transmitter & the receiver must acquire the stage.


802.11 DC7 (Distributed Coordination Function)

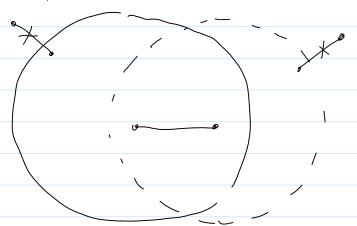
- uses CSMA/CA ((arrier sense multiple access with collision avoidance)


transmitter

D27S | S27S | E frame | medium sensed free

receiver

2) To ensure correct operation, the sensing relationship must be bi-directional sensing relationship is bidirectional If A can sense B's transmission, then B is also able to sense A's trans mission


By toansmission

Hence, even though 8v2.11 allows toans onitter to change power, it is reprired that RTS/CTS must be sent at maximum power. Assuming that the channel gain is
the same in both directions, sending
1275/C75 at constant power ensures
that the interference relationship
is bidirectional:

- If link AB interferes with
link CD, then link CD
also interferes with link
AB.

Summay: The interference volationship in WLAN.

Tach line interferes with links in a two-hop neighborhood.

Binary exp. Backoff -5min

Monday, January 21, 2008 3:07 PM

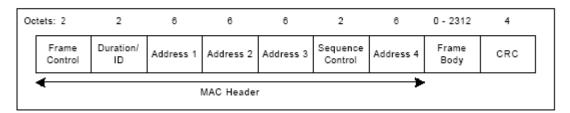
It no CTS or ACK is received at the sender, it is assumed that collision has occurred

The transmitter backs off a random time (uniformly between 0 to .Wo-1) before it attempts again.

For every further collision, the range of backoff window is doubted until the maximum 2 M Wo.

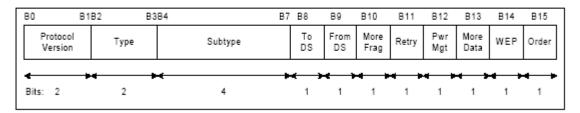
This procedure is called binary exponental backoff.

We will discuss in more detail later on.


(25)

Frame format - 5min

Monday, January 21, 2008 3:00 PM


MAC Data

The following figure shows the general MAC Frame Format, part of the fields are only present on part of the frames as described later.

Frame Control Field

The Frame Control field contains the following information:

P402 Fix 12.4

duration: wed to set NAV address 1: destination address 2: source dddress 3: id of the BSS (cell)

Frame control field
Type Subtype

management 00

	I			
	00		management	
	1.5		management	
	[D		WT()	
		(0 / /	RTS comtoo CTS ACK	1
			C7S	
	0	[10]	ALK J	
(39)				
09				

WLAN versus cellular

Tuesday, January 22, 2008 4:30 PM

WLAN	_Collular data
- Interoperability among vendors/providers	- deinus tied to provider
-economy of scale	
- unticersed band	- licensed band
- los cot	- high cost
	0
- small range / hot-spots	- sood coverage
- limited handoft/ hoobshity support	- good mobility Sympat.
	· 1