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Presentation Outline

•Reminder: 
»Basic concepts of donors and acceptors 
»Statistics of donors and acceptor levels
»Intrinsic carrier concentration

•Temperature dependence of carrier 
concentration

•Multiple doping, co-doping, and heavy-doping
•Conclusion
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Donor Atoms in H2-analogy
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Donor Atoms in Real and Energy Space
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How to Read the Table …

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Summary …
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A bulk material must be charge neutral over all …

Further if the material is spatially homogenous 
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Carrier-density with Uniform Doping
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A bulk material must be charge neutral over all …

Further if the doping is spatially homogenous

Once you know EF, you can calculate n, p, ND
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Intrinsic Concentration
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Carrier Density with Donors
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In spatially homogenous field-free region …

Assume  
N-type doping …

n
(will plot in next slide)

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Temperature-dependent Concentration
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Physical Interpretation
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Electron Concentration with Donors
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Electron concentration with Donors
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No approximation so far ….

2× = ip n n
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High Donor density/Freeze out T
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Extrinsic T
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Intrinsic T
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Extrinsic/Intrinsic T
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What will happen if you use silicon circuits at very high temperatures ? 

Bandgap determines the intrinsic carrier density.
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Determination of Fermi-level
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Multiple Donor Levels
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Heavy Doping Effects: Bandtail States
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Heavy Doping Effects: Hopping Conduction 
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Arrangement of Atoms

Poly-crystalline
Thin Film 
Transistors

Crystalline

Amorphous
Oxides
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Poly-crystalline material 

Isotropic bandgap and increase in scattering
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Band-structure and Periodicity

Periodicity is sufficient, but not necessary for bandgap. 
Many amorphous material show full isotropic bandgap
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Conclusions

1. Charge neutrality condition and law of mass-action 
allows calculation of Fermi-level and all carrier 
concentration.

2. For semiconductors with field, charge neutrality will 
not hold and we will need to use Poisson equation.

3. Heaving doping effects play an important role in 
carrier transport. 
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Outline

29

1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Current Flow Through Semiconductors 

30

I

V

Depends on chemical composition, 
crystal structure, temperature, doping, etc. 

Carrier 
Density

velocity

I G V

q n Av

= ×
= × × ×

Transport with scattering, non-equilibrium Statisti cal Mechanics 
⇒ Encapsulated into drift-diffusion equation with 

recombination-generation (Ch. 5 & 6)

Quantum Mechanics + Equilibrium Statistical Mechani cs 
⇒ Encapsulated into concepts of effective masses 

and occupation factors  (Ch. 1-4)
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Non-equilibrium Systems

31

vs.

Chapter 6 Chapter 5

I

V

How does the system
go BACK to 
equilibrium?
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Direct Band-to-band Recombination

32

Photon

GaAs, InP, InSb (3D)

Lasers, LEDs, etc.

In real space … In energy space …

Photon
Direct transistion –
direct gap material

e and h must 
have same wavelength 

1 in 1,000,000 encounters
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Direct Excitonic Recombination

33

Photon 
(wavelength reduced from bulk)

CNT, InP, ID-systems

Transistors, Lasers, Solar cells, etc.

In energy space …

In real space …

Mostly in 1D systems
Requires strong 
coulomb interactions
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Indirect Recombination (Trap-assisted)

34

Phonon

Ge, Si, ….

Transistors, Solar cells, etc.

Trap needs to 
be mid-gap to 
be effective.  
Cu or Au in Si
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Auger Recombination

35

Phonon (heat)

InP, GaAs, …

Lasers, etc.

12

3

1 2

4

3

4

Requires very 
high electron 
density
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Impact Ionization – A Generation Mechanism

36

Si, Ge, InP

Lasers, Transistors, etc.

4

3

1

2
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Indirect vs. Direct Bandgap

37

The top & bottom of bands do not align at
same wavevector k for indirect bandgap material
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Photon Energy and Wavevector

38
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Phonon Energy and Wavevector

39
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Phonon has large wavevector comparable to BZ,
but negligible energy compared to bandgap

vsound ~ 103 m/s << vlight=c ~ 106m/s 

λsound >> λlight
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Localized Traps and Wavevector

40

4

2 2

5 10trap ~k
a m

π π
µ−≈

×

Trap provides the wavevector
necessary for indirect transition

a
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Outline

41

1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146
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Equilibrium, Steady state, Transient

42

Device

Steady state

Transient

Equilibrium

time

(n
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)

time
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)Environment
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Detailed Balance: Simple Explanation

43

Mexico

China

India

USA

3 3

2
2

4
4

The rates of exchange of people (particles) 
between every pair of countries (energy levels) is 
balanced. Hence the name “Detailed Balance”.

Detailed balance is the property of equilibrium

The population of each of the countries (energy 
levels) remains constant under detailed balance.

The concept of detailed balance is powerful, 
because it can be used for many things (e.g. 
reduce the number of unknown rate constants by 
half, and derive particle distributions like Fermi-
Dirac, Bose-Einstein distributions, etc.)

•9 in &  9 out 
•All numbers are people/unit time.

Equilibrium is a very active place 

Fermi-Dirac distribution demands 
exploration of allowed states
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Steady-state Response

44

Mexico

China

India

USA

4 6

3
2

4
5

Disturbing the detailed balance requires 
non-equilibrium conditions (needs energy). 
Unidirectional forces (red lines) can create such 
Non-equilibrium conditions.   

The rates of exchange of people (particles) 
between every pair of countries (energy 
levels) is NOT balanced, but the sum of all arrival 
and departures to all countries is zero. 

The flux at steady state is balanced overall, but 
the flux is NOT the same as in detailed balance
(e.g. 12 in and 12 out in SS vs. 9 in and 9 out for 
Detailed Balance, for example).

The population of a country (energy level) remains 
constant with time after steady state is reached. 

One can use the requirement that net flux at steady 
state be zero  to calculate steady state population 
of a country (Eq. 5.21)

12 in and 12 out from USA 

1

1
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Detailed Balance, Transient, Steady-state

45

Mexico

China

India

USA

3 3

2
2

4
4

9 in 9 out 
Population conserved

Equilibrium =
Detailed balance

Mexico

China

India

USA

3 5

3

4
5

1

1

2

Forced unidirectional connections
(red lines) disturbs equilibrium 
(e.g. 10 in/12 out at time t1
local populations not conserved, 
but global population is ….

Transient populations

Mexico

China

India

USA

4 6

3
2

4
5

1

1

12 in 12 out 
Population stabilized

Steady State  
But NOT Equilibrium
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Outline

46

1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146
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Indirect Recombination (Trap-assisted)

47

Phonon

Ge, Si, ….

Transistors, Solar cells, etc.
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Physical view of Carrier Capture/Recombination

48

(2) After electron capture(3) After hole capture

TT TN pn= +

(1) Before a capture

electron-
filled
traps

empty
traps

total
traps

electron
hole

Crystal / atoms
with vibrations 

Traps have destroyed
one electron-hole pair

No change in nT and pT
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Carrier Capture Coefficients

49
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Capture Cross-section

50

2
0n rσ π=

e1

e2

e3

h1

h1

16 -22 10 cm−×

156 10−×185 10−×

147 10−×

Zn capture model …

Cascade model for capture
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Conclusions

51

1) There are wide variety of generation-recombination 

events that allow restoration of equilibrium once the 

stimulus is removed.

2) Direct recombination is photon-assisted, indirect 

recombination phonon assisted. 

3) Concepts of equilibrium, steady state, and transient 

dynamics should be clearly understood.
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Outline

52

1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion

Ref. ADF, Chapter 5, pp. 141-154
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Sub-processes of SRH Recombination 

53

(1)

(3)

(2)

(4)

(1)+(3):  one electron reduced from Conduction-band & 
one-hole reduced from valence-band

(2)+(4):  one hole created in valence band and 
one electron created in conduction band
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SRH Recombination 

54

Physical picture

(1)

(3)

(2)

(4)

(1)+(3):  one electron reduced from C-band & 
one-hole reduced from valence-band

Equivalent picture

(1)

(3)

(2)

(4)

(2)+(4):  one hole created in valence band & 
one electron created in conduction band
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Changes in electron and hole Densities

55
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Detailed Balance in Equilibrium

56
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Expressions for (n1) and (p1)

57
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Expressions for (n1) and (p1)

58
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( )00

1
1

1 exp
f

g
=

+
− 00

1
1

1 x
f

g e p
= −

+

00 1

g exp
f

g exp
=

+
00

00 11
1

1

g exp
/ g exp

g exp g ex
f

f p
= =

+ +−



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Dynamics of Trap Population 

59
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Steady-state Trap Population 

60
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Net Rate of Recombination-Generation 

61
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Outline

62

1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion
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Case 1: Low-level Injection in p-type 
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Lots of holes, few electrons => independent of holes
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Case 2: High-level Injection 
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e.g. organic solar cells

Lots of holes, lots of electrons => dependent on both relaxations
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High/Low Level Injection … 
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Case 3: Generation in Depletion Region 
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Depletion region – in PN diode:  n=p=0

NEGATIVE Recombination =>  Generation

n=p=0    << ni =>   generation to create n,p
Equilibrium restoration!
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Outline
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1) Derivation of SRH formula

2) Application of SRH formula for special cases

3) Direct and Auger recombination

4) Conclusion
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Band-to-band Recombination
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Direct generation in depletion region

Direct recombination at low-level injection

B is a material property
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Auger Recombination

69

2
2

1τ
τ

≈ =∆ =∆
p A auger

auger p A

R c N
c N

n
n

( ) ( )2 2

29 6

2 2

10  cm /sec−

= + −−n p i

n

i

p

R c c np n p

c ,c ~

n p n n

( ) ( )0 0 An n p p N∆ = ∆ =≪ ≪

Auger recombination at low-level injection

2 electron & 1 hole
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Effective Carrier Lifetime
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Effective Carrier Lifetime with all Processes
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Elec. Dev. Lett., 12(8), 1991.
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Conclusion
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SRH is an important recombination mechanism in 
important semiconductors like Si and Ge. 

SRH formula is complicated, therefore 
simplification for special cases are often desired. 

Direct band-to-band and Auger recombination can 
also be described with simple phenomenological 
formula.

These expressions for recombination events have 
been widely validated by measurements. 


