





$$n = \int_{E_c}^{E_{top}} g_c(E) f(E) dE$$

$$= \int_{E_c}^{E_{top}} 2 \times \frac{m_n^* \sqrt{2m_n^*(E - E_C)}}{2\pi^2 \hbar^3} \frac{1}{1 + e^{\beta(E - E_F)}} dE$$

$$= \int_{E_c}^{\infty} \frac{m_n^* \sqrt{2m_n^*(E - E_C)}}{\pi^2 \hbar^3} \frac{1}{1 + e^{\beta(E - E_c)}} dE$$
Assume wide bands
$$= \int_{E_c}^{\infty} \frac{m_n^* \sqrt{2m_n^*(E - E_C)}}{\pi^2 \hbar^3} \frac{1}{1 + e^{\beta(E - E_c)} e^{\beta(E_c - E_F)}} dE$$

$$= N_C \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_c) \qquad \eta_c \equiv \beta(E_F - E_C)$$

$$N_c \equiv 2 \left(\frac{2\pi m_n^* \beta}{\hbar^2}\right)^{3/2} F_{1/2}(\eta) = \int_0^{\infty} \frac{\sqrt{\xi} d\xi}{1 + e^{\xi - \eta}}$$
PURPOPEr Klimeck - ECE606 Fall 2012 - notes adopted from Alam































| Presentation Outline                                                 |  |  |
|----------------------------------------------------------------------|--|--|
| <ul> <li>Intrinsic carrier concentration</li> </ul>                  |  |  |
| <ul> <li>Potential, field, and charge</li> </ul>                     |  |  |
| <ul> <li>E-k diagram vs. band-diagram</li> </ul>                     |  |  |
| <ul> <li>Basic concepts of donors and acceptors</li> </ul>           |  |  |
| <ul> <li>Law of mass-action &amp; intrinsic concentration</li> </ul> |  |  |
| <ul> <li>Statistics of donors and acceptor levels</li> </ul>         |  |  |
| <ul> <li>Intrinsic carrier concentration</li> </ul>                  |  |  |
| <ul> <li>Temperature dependence of carrier concentration</li> </ul>  |  |  |
| <ul> <li>Multiple doping, co-doping, and heavy-doping</li> </ul>     |  |  |
| • Conclusions                                                        |  |  |
| Reference: Vol. 6, Ch. 3 & 4                                         |  |  |
| PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam          |  |  |



































**Statistics of Donor Levels**  

$$\frac{u/d}{b} = \frac{E_i + N_i}{b} + \frac{P_i}{b}$$

$$\frac{0/0 + 0}{0} + \frac{1}{b} = \frac{1/Z}{b}$$

$$\frac{0/1 + 1}{b} + \frac{1}{b} = \frac{e^{-\frac{(E_i - E_F)}{b_B T}}}{1/2}$$
Prob. that the donor is empty (charged)
$$f_{00} = \frac{P_{00}}{P_{00} + P_{01} + P_{10}} = \frac{1/Z}{1/Z + 2e^{-(E_i - E_F)/k_B T}} = \frac{1}{1 + 2e^{(E_F - E_i)/k_B T}}$$
Prob. that the donor is filled with at least one electron (neutral)
$$1 - f_{00} = 1 - \frac{1}{1 + 2e^{(E_F - E_i)/k_B T}} = \frac{1}{1 + \frac{1}{2}e^{(E_i - E_F)/k_B T}}$$
Note the extra factor ....



| orico ACA<br>O nontiliorg                                                                                                                                                    | Loc                                                                                                                                                                                                               | alized vs. Band Electrons                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | $\begin{array}{l} E6 \leftarrow \ 12\pi/L_{x} \\ E5 \leftarrow \ 10\pi/L_{x} \\ E4 \leftarrow \ 8\pi/L_{x} \\ E3 \leftarrow \ 6\pi/L_{x} \\ E2 \leftarrow \ 4\pi/L_{x} \\ E1 \leftarrow \ 2\pi/L_{x} \end{array}$ | Two electrons (even with<br>opposite spin) can not<br>be at the same position<br>and same energy because<br>of electrostatic repulsion |
| $\leftarrow Lx \longrightarrow$                                                                                                                                              | $\begin{array}{l} E3' \leftarrow 6\pi/(L_x/2) \\ E2' \leftarrow 4\pi/(L_x/2) \\ E1' \leftarrow 2p/(L_x/2) \end{array}$                                                                                            | Band electrons (with<br>opposite spin) need not<br>be at the same position,<br>so they can share occupy<br>same energy level.          |
| $\begin{array}{c c} \bullet \bullet$ |                                                                                                                                                                                                                   |                                                                                                                                        |



| orico nontling                                              | Statistics of Acceptor Levels in Si and Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| E<br>from lh<br>E<br>from hh<br>from hh<br>from hh          | <ol> <li>Each atom contributes 2 states (up &amp; down spin)<br/>to a band, therefore a band has 2N states.</li> <li>Every time a host atom is replaced by a impurity atom, 2 states are disappear per a band and appear as localized states (sort of).</li> <li>Therefore an acceptor atom close to hh and lh bands removes four states from those bands.</li> <li>Because of Coulomb interaction only 1 hole can seat in these 4 states: the states are 0000, 0001, 0010, 0100, 1000.</li> </ol> |  |
| PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |



$$P_{0000} = \frac{e^{-(0-0xE_F)/k_BT}}{\sum_{i} e^{-(E_i - N_i E_F)/k_BT}} = \frac{1}{Z}$$

$$P_{0001} = P_{0010} = P_{0100} = P_{1000} = \frac{e^{-(-E_A - (-1)E_F)/k_BT}}{\sum_{i} e^{-(-E_A - (-1)E_F)/k_BT}} = \frac{e^{(E_A - E_F)/k_BT}}{Z}$$

$$f_{0000} = \frac{P_{0000}}{P_{0000} + P_{1000} + P_{0010} + P_{0001}} = \frac{1}{1+4e^{(E_A - E_F)/k_BT}}$$
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

















































