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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions

2



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

k

a

π
a

π− 2
k

Na

π∆ =

E E

DOS

( )3 3 0

2 3

2* *m m E E
DOS

π
−

=
ℏ

Reminder: Momentum vs. DOS

Important things to remember:
• Momentum k entered our thinking as a quantum number
• Each quantum number is creating ONE state
• Often “just” need the number of available states in an energy range  

=> Density of States 
=> appears to be solely determined by 
»1) band edge, 
»2) effective mass 3
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Measurement of Band Gap
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Measurement of Energy Gap
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Temperature-dependent Band Gap
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Reference: Vol. 6, Ch. 3 & 4
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Measurements of Effective Masses

Important things to remember:
• Full bands do not conduct –

electrons have no space to go
• Empty bands to not conduct –

there are no electrons to go around
Question:
• We are interested in the top-most 

valence band holes and the bottom-
most electron states

• We want to figure out the slope of the 
bands 

• How can we probe just one particular 
species of electrons/holes?

• We do not want to transfer them from 
one band to the next!

=> can we rotate the electrons around in 
a single band?  
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Motion in Real Space and Phase Space
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Derive the Cyclotron Formula
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the Lorentz force is …
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Measurement of Effective Mass
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Effective mass in Ge
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4 angles between B field and the ellipsoids …
Recall the HW1

B
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Derivation for the Cyclotron Formula
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The Lorentz force on electrons in a B-field 
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In other words, 

Given three mc and three θ,
we will Find mt, and ml
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Continued …
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Differentiate (vy) and use other equations to find …

Let (B) make an angle (θ) with longitudinal axis of the 
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Measurement of Effective Mass

Three peaks     B1, B2, B3
Three masses   mc1,mc2,mc3
Three unique angles: 7, 65, 73 
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Known θ and mc allows calculation of mt and 
ml.

[110]
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Valence Band Effective Mass

Which peaks relate to valence band?
Why are there two valence band peaks? 
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Conclusions

1) Only a fraction of the available states are occupied. The 

number of available states change with energy. DOS 

captures this variation. 

2) DOS is an important and useful characteristic of a 

material that should be understood carefully.  

3) Experimental measurements are key to making sure that 

the theoretical calculations are correct. We will discuss 

them in the next class. 
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions
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Carrier Density

Carrier number = Number of states x filling factor

Chapters 2-3 Chapter 4
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E-k diagram and Electronic States
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Rules for filling up the States

� Pauli Principle:  Only one electron per state

� Total number of electrons is conserved

� Total energy of the system is conserved

E2

E3

T ii
N N=∑

T i ii
E E N=∑

E1
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Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions

In 1926, Fowler studied collapse of a star to white dwarf by F-D 
statistics, before Sommerfeld used the F-D statistics to develop a 
theory of electrons in metals in 1927. Wikipedia has a nice article on 
this topic. Difference between a trick and a method: 
A method is a trick used more than once!
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Illustrative Example: 3 Energy Levels
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Occupation Statistics

E=0

E=2

E=4

122 420W = 041 35W =
203 35W =

W
 (E

)

2,0,3          1,2,2           0,4,1

Choose the most 
probable configuration.
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Occupation Statistics
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Side note:
So far everything shown 
here is EXACT!
No approximations on 
the occupation 
probability!
=> direct application to 
nano-scale electronics!
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For N-states
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Optimization with Lagrange-Multiplier
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See additional notes on Lagrange multiplies on ece606 page and blackboard

Particle conservation

Energy conservation

Optimization with constraints!

0=
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Final steps …
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Derivation by Detailed Balance

� Pauli Principle, energy, and number conservation all satisfied 
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Energy conversation

Pauli Exclusion

Detailed Balance in Equilibrium
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Derivation by Partition Function
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Derivation by Partition Function
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Few comments on Fermi-Dirac Statistics

� Applies to all spin-1/2 particles

� Information about spin is not explicit; multiply DOS by 2. 
May be more complicated for magnetic semiconductors. 

� Coulomb-interaction among particles is neglected,
Therefore it applies to extended solids, not to small molecules 

Lx
32
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Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions
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Carrier Distribution 
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Electron Concentration in 3D solids
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Boltzmann vs. Fermi-Dirac Statistics
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Effective Density of States
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37

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Law of Mass-Action
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Product is independent of the Fermi level!
Very useful balance equation!  Will use it often
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Fermi-Level for Intrinsic Semiconductors
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Conclusions

• We discussed how electrons are distributed in electronic states 

defined by the solution of Schrodinger equation. 

• Since electrons are distributed according to their energy, 

irrespective of their momentum states, the previously 

developed concepts of constant energy surfaces, density of 

states etc. turn out to be very useful.

=> will not discuss Schroedinger Eq. anymore

=> everything is captured in bandedges and effective masses

• We still do not know where EF is for general semiconductors … If 

we did, we could calculate electron concentration. 
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Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
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Illustrative Example: 3 Energy Levels
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Occupation Statistics

E=0

E=2

E=4

122 420W = 041 35W =
203 35W =

W
 (E

)

2,0,3          1,2,2           0,4,1

Choose the most 
probable configuration.
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Occupation Statistics
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2,0,3      1,2,2         0,4,1

f(E)

E

Side note:
So far everything shown 
here is EXACT!
No approximations on 
the occupation 
probability!
=> direct application to 
nano-scale electronics!
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For N-states
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Optimization with Lagrange-Multiplier
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See additional notes on Lagrange multiplies on ece606 page and blackboard

Particle conservation

Energy conservation

Optimization with constraints!

0=
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Final steps …
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder - Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: 

»three techniques

• Intrinsic carrier concentration
•Potential, field, and charge
•E-k diagram vs. band-diagram
•Basic concepts of donors and acceptors 
•Conclusions
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Derivation by Detailed Balance

� Pauli Principle, energy, and number conservation all satisfied 

0 3 0 4 0 1 0 2( ) ( )[1 ( )][1 ( )]f E f E f E f E− −
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0 1 0 2 0 3 0 4( ) ( )[1 ( )][1 ( )]f E f E f E f E− −
=

Energy conversation

Pauli Exclusion

Detailed Balance in Equilibrium
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder - Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: 

»three techniques

• Intrinsic carrier concentration
•Potential, field, and charge
•E-k diagram vs. band-diagram
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Derivation by Partition Function
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Derivation by Partition Function
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Few comments on Fermi-Dirac Statistics

� Applies to all spin-1/2 particles

� Information about spin is not explicit; multiply DOS by 2. 
May be more complicated for magnetic semiconductors. 

� Coulomb-interaction among particles is neglected,
Therefore it applies to extended solids, not to small molecules 

Lx
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Carrier Distribution 
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Electron Concentration in 3D solids
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Boltzmann vs. Fermi-Dirac Statistics
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Effective Density of States
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As if all states are at a single level EC
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Law of Mass-Action
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Product is independent of the Fermi level!
Very useful balance equation!  Will use it often
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Fermi-Level for Intrinsic Semiconductors
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• We discussed how electrons are distributed in electronic states 

defined by the solution of Schrodinger equation. 

• Since electrons are distributed according to their energy, 

irrespective of their momentum states, the previously 

developed concepts of constant energy surfaces, density of 

states etc. turn out to be very useful.

=> will not discuss Schroedinger Eq. anymore

=> everything is captured in bandedges and effective masses

• We still do not know where EF is for general semiconductors … If 

we did, we could calculate electron concentration. 

Summary – DOS and Fermi Functions
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