ECE606: Solid State Devices
Lecture 4

Gerhard Klimeck
gekco@purdue.edu

Catchup from last lecture
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« Schrodinger equation in periodic U(X)
*Bloch theorem

*Band structure

* Properties of electronic bands

*E-k diagram and constant energy surfaces
*Conclusions

Reference: Vol. 6, Ch. 3

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam




Three Critical Conceptual Steps

* Basis State Selection

» Physical problem is based on a 1D/2D/3D periodic array of atoms

» Desired system/signal response is periodic in space

» Physical space is infinitely extended

v’ Can the physical space be collapsed into a different representation?

»Chose a basis system of plane waves

»New finite reciprocal space is representative of the original system

»In 2D and 3D the reciprocal space may have critical axes/symmetries
» Solution of the Schroedinger Equation

» Solution with plane waves in reciprocal space

» 1D solution performed in Kroenig-Penney model (last lecture)
v Band formation

»2D/3D solution along critical paths in the reciprocal space
* Filling of the states

» States are filled from the bottom up.

» Thermal distribution will cause some disorder

b
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Fourier Transform Reminders
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" band Ak 27TNL
> k 4 states per atom, N atoms
7 ~ =>4 bands, N states in each band
L o All states are included in the first zone
VI Invariant to shift by
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Solution Space: Brillouin Zone

4 states per atom, N atoms
> k =>4 bands, N states in each band
N All states are included in the first zone
Invariant to shift by
_em N
A= T Collapse of an infinit
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Fourier Transform Reminders
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Reciprocal Space

A 1D periodic function: f (X) = f (X+|); | =nL
can be expanded in a Fourier series:

f(X) - Z A.|ei2ﬂnX/L — Z Abeigx :2_ﬂn

The Fourier components are defined on a discrete set of
periodically arranged points (analogy: frequencies) in a
reciprocal space to coordinate space.

3D Generalization:
u,(k,r)=3 f2(k)e°"; G=hb, +kb, +Ib,
G

G[a Wherehkl are integers G=Reciprocal lattice vector
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Brillouin Zone -

Allowed States in a Reciprocal Lattice

Lo Fourier transform:

(' kr) Represented real-space
with plane waves
Impose periodicity in R

f(r+R)=f(r)
- e NP
f(r+R) _}/@jd kf(k)exp(lk(r + R))
exp(iR§)= 1 kR=2/m
k =G =hky +kk, +1k, Reciprocal vector G
1) Define reciprocal lattice with the following vectors ....
bxc _ cxa _ axb
asbxc asbxc ° ash x|

2) Use Wigner Seitz algorithm to find the unit cell
in the wave-vector (reciprocal) space.
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k, =2m

X

Wigner-Seitz Method for Reciprocal Space

bx 2 Zxa
k =271——— = —
X ”a-bxil Y ahx 2]

X
10 %
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Brillouin Zone for One-dimensional Solids

Real-space e Replacing

(a+b) by L...

18-z

E-k diagram
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E-k diagram in 2D solids

Real-space b

1stB-Z 5 K,
T
a

E-k diagram
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Constant Energy-surface in 2D

1stB-Z

E-k diagram \\y ky / kx

Const. Energy
Surface R K,

T
i \;[/ i .
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Conclusions

« Solution of Schrodinger equation is relatively easy for systems with well-
defined periodicity.

« Electrons can only sit in-specific energy bands. Effective masses and
band gaps summarize information about possible electronic states.

« Effective mass is not a fundamental concept. There are systems for
which effective mass can not be defined.

 Kronig-Penney model is analytically solvable. Real band-structures are
solved on computer. Such solutions are relatively easy — we will do HW
problems on nanohub.org on this topic.

- Effective mass is not a fundamental concept. There are systems for
which effective mass can not be defined.

« Of all the possible bands, only a few contribute to conduction. These are
often called conduction and valence bands.

 For 2D/3D systems, energy-bands are often difficult to visualize. E-k
diagrams along specific direction and constant energy surfaces for
specific bands summarize such information.

» Most of the practical problems can only be analyzed by numerical
solution.

x
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ECE606: Solid State Devices
Lecture 5

Gerhard Klimeck
gekco@purdue.edu

X
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Presentation Outline

*Reminder — bandstructure in 1D — Brillouin Zone

*E-k diagram/constant energy surfaces in 3D
solids

* Definition of a density of states
*Density of States for specific materials
*Conclusions

Reference: Vol. 6, Ch. 3
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How do electrons move through a real crystal?

. Periodic
Original Structure
Problem
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N Wells => 2N States => 2 Bands

- Vb=110meV, W=6nm, B=2nm — — .
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N Wells => 2N States => 2 Bands
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GaAs Well Comparison - 80 Barriers

E-k comparison

0.35/ °© PPL-GaAs A GaAs structure with
—TB-80 barriers 6nm wells, 2nm barriers
0.3f|— TM-80 barriers ] and 0.4eV barrier height
< < is modeled as follows,
L 0.25¢ ] « PPL-Periodic structure
= repeated indefinitely.
g) 0.2} « TB: 80 barriers using
I} tight-binding.
0.15¢ « TM: 80 barriers using
transfer matrices.
0.1} It can be seen that the
results of these three

0 0.5 1 1.5 2 | approaches agree well.
Normalized k vector
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Brillouin Zone and Number of States

<—0—o—0—0—‘5—0—0—0—0—§l—>

1 2

WX+ N =g(R) e

sat% _ kmax - kmin —_ 2% —_
3 - 27
band Ak NL

> k 4 states per atom, N atoms
~ =>4 bands, N states in each band
o All states are included in the first zone

NLL Invariant to shift by
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Reciprocal Space

A 1D periodic function: f (X) = f (X+|); | =nL
can be expanded in a Fourier series:
f(X) - Z A.|e|2ﬂnX/L — Z Abelgx g — L
n g

The Fourier components are defined on a discrete set of
periodically arranged points (analogy: frequencies) in a
reciprocal space to coordinate space.

3D Generalization:
u,(k,r)=3 f2(k)e°"; G=hb, +kb, +Ib,
G

G[a Wherehkl are integers G=Reciprocal lattice vector
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Brillouin Zone -

Allowed States in a Reciprocal Lattice

L= Fourier transform:

(' kr) Represented real-space
with plane waves
Impose periodicity in R

f(r+R)=f(r)
__— e e e -
f(r+R) _}/@jd kf(k)exp(lk(r + R))
exp(iR§)= 1 kR=2/m
k =G =hky +kky +1k, Reciprocal vector G
1) Define reciprocal lattice with the following vectors ....

bxc _ cxa _ axb
asbxc asbxc ° ash x|

2) Use Wigner Seitz algorithm to find the unit cell
in the wave-vector (reciprocal) space.
23 %
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k, =2m

X

Brillouin Zone in Cubic Lattice ...

Brillouin Zone

7
b

Follow W-S algorithm, but
now for reciprocal lattice

24%
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Brillouin Zone in Real FCC Lattices ...

Real Space FCC ) . Brillouin Zone of
(for Si, Ge GaAs)ReuprocaI Lattice

Reciprocal Lattice

Y

|
s

?

A

"
\

a
'?_L_jt!rf

Diamond lattice and bcc are
Fourier Transforms of each other!
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Brillouin Zone in Real FCC Lattices ...

Real Space FCC Brillouin Zone of

(for Si, Ge, GaAS)ReCIprocaI Lattice Reciprocal Lattice

Y 2ma
f

Diamond lattice and bce are
Fourier Transforms of each other! 0.87[P17a

Note unlike cubic lattice, zone edge is not at a
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Brillouine Zone is Space Filling

Brillouin Zone of

Recipt;ocal Lattice
x Tz 217a

0.87[P17a

Note unlike cubic lattice, zone edge is not at a

ox
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B LS Presentation Outline
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*Reminder — bandstructure in 1D — Brillouin Zone

*E-k diagram/constant energy surfaces in 3D
solids

Reference: Vol. 6, Ch. 3

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam - %




Analogy for E-k Diagram: 4D info thiough 2D Plots

Density (X,y,2)
4D information

Cut along (6;, @) ...

Y

A series of line-sections can \

Represent the 4D info in 2D plots
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E-k along I"-X Direction

Ge

-2

D T a0 X
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E-k along I'-L direction

D T X

ox
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E-k Diagram

4ﬂ g“‘ -

3 L - /\
- 2P — -
d i \ E, Q 15
< 1 - e o
’ﬁ E, E. Eg Eg
Mo E, t g, ! E,

1

. L -

-2"" — —

_3_ — —

_4L (111} T (100) X L {111} T 100) X L {111} T {1000 X

k (wave vector)

= 3 valence bands (light hole, heavy hole, split-off)
valence bands near k=0 is essentially E ~ k?

® Minima may not be at zone center
"(Ge: 8 L valleys, Si: 6 X valleys, and GaAs: I' valleys)
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E-k diagram for GaAs

3 T=30K
Direct bandgap material

2L
e o Zone-edge gaps (Lg-g,
:ﬂ; ! L7V 1426V 190V Xe-T'g) Close to direct gap
I

ok vi) tomoee LI de,  Has important implications

. N N For transport
(V2) 0.34eV
-l Split-off band
(V3)
L A r A X
k (wave vector)
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Analogy for E-k Diagram

Contours of density ....

Density (X,y,2)
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Constant-E surface for Conduction Band

— 2 2 2
E=E + Ak +B(k; +k;)
-
[111])
Ge Si GaAs
(a) (b) (<)
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam - \%’f

Constant E-surface ...

E = £+ A+ B(KE +K) E=E + AR +KE +KD)
1_10E
m, 7* okok,
i_zf\, 1 __1_2_§ 1 - =0 i:_l :_1:2A —1 — =
ml h m22 m33 h m] (I Z J) ml m22 m33 mj (I z J)

Offdiagonal Elements=0 ,
=> Force and movement aligned s «%
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Four valleys inside BZ for Germanium

Tl
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Constant E-surface for Valence Band

4
L (111) r (100) X
E=E, - AT,/ [B2k* +C?(k2k? +k2kZ +k2k2)]

PURDUE | Si: A=4.29, B=0.68, C=4.87, Ge: A=13.38, B=8.48, C=13.15 LS




Presentation Outline

* Definition of a density of states

Reference: Vol. 6, Ch. 3
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Density of States

A single band has total of
N-states

N
\ Only a fraction of states
X are occupied

How many states are
occupied up to E?

P

X Or equivalently...

P

How many states per unit

-k k k energy ? (DOS)
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Density of States in 1-D Semiconductors
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N atoms

o—o0-o0—0000 0000
States betwee, AE & E, = Zx%
—ox Ak
2711/Na ,E,+AE
El
. Na Ak
States/init ene = 5
oy @E T AE > k
n
a

States/unit energy @ = Na Ak
m AE

12K? 2m (E-

dk_j_m
dE \2n*(E-E,)

. L m
States/unit enert = |
W8 = o (E-E)

States/unit energyhit length @

—pos=1 | M
m\ 2n* (E-E,)
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EA Eﬂ\ Dos:l L
n\lzhz(E—Eo)

e o - k R
TN DOS
Dk = ’2\7’; a
Conservation of DOS
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Density of States in 2D Semiconductors

Show that 2D DOS is a constant independent of energy!
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Density of States in 3D Semiconductors

ky

States betweeR, AE B, Macroscopic Sample

An(krok) -2k, Hﬁ
3 3 = KAk A

T wmmr oF ]
LWH
~ /
Statesi/nit enery @E :Lk 2 Bk :
27 dE —y
72/
l/
2L

W
E-EO=h2k23k= m3$= oom
2m - dE | 22(E-E,)
k
K

States/unit energy/unit volume &

+dk

=" o (E-
DOS= 2 2m (E-E,)

18
4577
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m; ZWE(E_EO)

DOS= pEre

EA Eﬂ /\/

e ¢ \k -
—> >
7 v N DOS
a =2 a
N Conservation of DOS

notes adopted from Alam
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Presentation Outline

* Definition of a density of states

Reference: Vol. 6, Ch. 3
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*Density of States for specific materials

)
472

Conduction/Valence Bands

Density of States of GaAs:
P
m,y/2m, (E-E)
9. (E) - 277253 0— —0
&

nﬁh\lznﬁh(E_Eu) ?

E~E,(eV)

2mh®

m*h\/ Zm*h (E B Eu)

2rn® &

gu(E)= 0— —
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Four valleys inside BZ for Germanium

E-E,(eV)
T
t

D T x

ox
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Ellipsoidal Bands and DOS Effective Mass

k2 const. E

2  2m  2m E=const. ellipsoid

1= - kiz + - k22 + " k32
{2m(E—EC)} {Zm(E—EC)} {ZH(E—EC)} k%

a> i £ N 7 " Transforminto ...

B

Ky

u=N, (3| =5

o $nfPEE) [ (E-E] [(E-E) 4,7{\/2@(&&)]3

3 W 7? n? 3 h*

* * * ]7/3
My = st(m m 2) N, is number of equivalent ellipsoids
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DOS Effective Mass for Conduction Band

Ge Si

LD T (0 X L Ath T Qo) x

>
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Conclusions

1) E-k diagram/constant energy surfaces are simple ways to
represent the locations where electrons can sit. They
arise from the solution of Schrodinger equation in
periodic lattice.

2) E-k diagram and energy bands contain equivalent
information. In principle, any one can be used to
construct the other.

3) Only a fraction of the available states are occupied. The
number of available states change with energy. DOS
captures this variation.

4) DOSis an important and useful characteristic of a
material that should be understood carefully.

x
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Presentation Outline

*Reminder — Density of states
»Possible states as a function of Energy

*Reality check - Measurements of Bandgaps
*Reality check - Measurements of Effective Mass
*Rules of filling electronic states

*Derivation of Fermi-Dirac Statistics: three
techniques

eIntrinsic carrier concentration
eConclusions

Reference: Vol. 6, Ch. 3 & 4

X
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Reminder: Momentum vs. DOS

— ; -
7 — k >
2 Ja NI DOS
kYT a

Na
Important things to remember:
» Momentum k entered our thinking as a quantum number
» Each quantum number is creating ONE state
« Often “just” need the number of available states in an energy range

=> Density of States
=> appears to be solely determined by

»1) band edge,
P »2) effective mass

R

Measurement of Band Gap

Photons are only absorbed between
bands that have filled and empty states

absorption

S
>

k

X
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Measurement of Energy Gap

S
>

k

X
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Temperature-dependent Band Gap

A 16 T
E !
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e N
15 aT
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B (T)=Es(0)
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4 N
13 I~
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(G e Y
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F e | osss [oraa7|armax 10|23 [
O T 1125 | 1170 (4730109 | 636 || | |
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P2 000 do0ee®] S
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k o 100 200 300 400 50 600
TK)
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Presentation Outline

*Reality check - Measurements of Bandgaps
*Reality check - Measurements of Effective Mass

Reference: Vol. 6, Ch.3 & 4

Tl
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Measurements of Effective Masses

E Important things to remember:

t « Full bands do not conduct —
electrons have no space to go

» Empty bands to not conduct —
there are no electrons to go around

Question:

» We are interested in the top-most
valence band holes and the bottom-
3 most electron states
» We want to figure out the slope of the
bands

r"/ 2 » How can we probe just one particular
3—0—0—0.0_?_0{){)0?

species of electrons/holes?
* We do not want to transfer them from
k one band to the next!

=> can we rotate the electrons around in
a single band? ;
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Motion in Real Space and Phase Space

Energy=constant.
X Liquid He temperature ...
(k0) %
(O.k,)
y
Ky
(-k.0) (0.-ky) K
<~ &
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Derive the Cyclotron Formula

= 9B
27V,
For an particle in (x-y) plane with B-field in z-direction,
the Lorentz force is ...

B
m* v?
0
UZQ%%
m* . 2m, _ 2rmm*
v qB,
V=£: qBO
) =
T 2mm*
_ _ 0B,
%-ZﬂVo—m*
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Measurement of Effective Mass

V=24 GHz B field variable ... e
(fixed)

. lin g lout @
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VO — qBO n,.'\— — qBO
2rm* 271V,
k,
- l i R — \
Bcon BvaI B . ky kx

Effective mass in Ge

o (119 11} [1a} [ 13

"0\ 119 [11} [22] [ 2%

4 angles between B field and the ellipsoids ...
Recall the HW1
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Derivation for the Cyclotron Formula

1 cos’d sin’@
Show that > = —t
m, m

Given three m, and three 6
mm we will Find m,, and m,

The Lorentz force on electrons in a B-field
du
F=quxB=|M|—

In other words, B

. du
Fy = q(Usz _UXBZ) = m d_ty

Fz :q(UxBy _Uy x) :n]*%

ox
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Continued ...

Let (B) make an angle (6) with longitudinal axis of the
ellipsoid (ellipsoids oriented along k,)
B0
B, =B,cos(6), B, =0, B,=B,sin(4), k
k
Differentiate (v,) and use other equations to find ...

X

d2
dt‘:y +U,67 =0 with o EI:chI sin20+afcosz€]
_ 9B, _0B, _0B,
W=E— WY=E— yg=—"
m m m

1 =sin26?+cos26’
(m)” mm m
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Measurement of Effective Mass

irg

.\\ B=[0.61, 0.61, 0.5]
[110] | § / B
. T 5 E 5 § Measured at
% g i g 2.4 x 101 Hz
[111] e w| o = Bin (110) plane
. H kS 1l ’\ making an angle
[111] = | \ { of 60° with [001]
’ i E ! \ als
z i i Lﬁ-'ﬂ
Ge 0038 01 0.2 ) 0.3 04 05
Magnetic field in webers/m?
2 ) Three peaks B,, B,, B m =B
1 _cos’d sin*d P 1, B2y B 21,
= Three masses m_,,m_.,,m
rncz mz m m ) cl c2 c3
Three unique angles: 7, 65, 73

Known 6 and m, allows calculation of m, and

el
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Valence Band Effective Mass

Electrons

Measured at
2.4 % 1010 Hz

B in (110) plane
making an angle
of 60° with [001]
anis

Relative absorption —

7 Holes

\

0.2 0.3 0.4 05
Magnetic field in webers/m?

- — —— — = == ——=> Electrons

N
5]

Which peaks relate to valence band?
Why are there two valence band peaks?

X
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Conclusions

1) Only a fraction of the available states are occupied. The
number of available states change with energy. DOS
captures this variation.

2) DOSis an important and useful characteristic of a
material that should be understood carefully.

3) Experimental measurements are key to making sure that
the theoretical calculations are correct. We will discuss
them in the next class.

Tl
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