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Reference: Vol. 6, Ch. 3

Presentation Outline

•Schrodinger equation in periodic U(x)
•Bloch theorem
•Band structure
•Properties of electronic bands
•E-k diagram and constant energy surfaces 
•Conclusions
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Three Critical Conceptual Steps

• Basis State Selection
»Physical problem is based on a 1D/2D/3D periodic array of atoms
»Desired system/signal response is periodic in space
»Physical space is infinitely extended

� Can the physical space be collapsed into a different representation?
»Chose a basis system of plane waves
»New finite reciprocal space is representative of the original system
»In 2D and 3D the reciprocal space may have critical axes/symmetries

• Solution of the Schroedinger Equation
»Solution with plane waves in reciprocal space
»1D solution performed in Kroenig-Penney model (last lecture) 

� Band formation
»2D/3D solution along critical paths in the reciprocal space

• Filling of the states
»States are filled from the bottom up.
»Thermal distribution will cause some disorder
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Fourier Transform Reminders

finite <=> infinite

infinite <=> infinite

iaxe

Space Mapping

Periodic => discrete
1

( )cos ax
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1D Brillouin Zone and Number of States
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Solution Space: Brillouin Zone

4 states per atom, N atoms
=> 4 bands, N states in each band
All states are included in the first zone
Invariant to shift by
Collapse of an infinite space into a 
discrete space 
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Fourier Transform Reminders

finite <=> infinite

infinite <=> infinite

iaxe

Space Mapping

Periodic => discrete
1

( )cos ax
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A 1D periodic function: 

can be expanded in a Fourier series:

The Fourier components are defined on a discrete set of 
periodically arranged points (analogy: frequencies) in a 
reciprocal space to coordinate space.

3D Generalization:

( ) ( );   f x f x l l nL= + =

2 / 2
( ) i nx L igx

n g
n g

n
f x A e A e g

L
π π= = =∑ ∑
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;r, 321
G

G

⊥

++=∑= ⋅

G

bbbGkk rG lkhefu in
n

Where hkl are integers.  G=Reciprocal lattice vector

Reciprocal Space

Notes adopted from Dragica Vasileska, ASU 8
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2 2 2x y z

b c c a a b
k k k

a b c a b c a b c
π π π× × ×= = =

× × ×i i i

1) Define reciprocal lattice with the following vectors ….

2) Use Wigner Seitz algorithm to find the unit cell 
in the wave-vector (reciprocal) space. 

Brillouin Zone –

Allowed States in a Reciprocal Lattice

( )31( ) ( )exp
2

f r d k f k ikr
π

= ∫
� � � �� Fourier transform:

Represented real-space
with plane waves

( )( )31( ) ( )exp
2

f r R d k f k ik r R
π

+ = +∫
� �� � � � � ��

Impose periodicity in R( ) ( )f r R f r+ =
� �� �

( )exp 1ik R =
���

2k R nπ=
���

x x zk G hk kk lk= = + +
� �� � � �

Reciprocal vector G
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Wigner-Seitz Method for Reciprocal Space 

Primitive cell in real space Unit-cell in reciprocal lattice

a

b ky

kx

ˆ ˆ
2 2

ˆ ˆx y

b z z a
k k

a b z a b z
π π× ×= =

× ×i i
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Brillouin Zone  for One-dimensional Solids

Real-space

1st B-Z
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E-k diagram
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Replacing

(a+b) by L …

11

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

E-k diagram in 2D solids

Real-space

1st B-Z

E-k diagram
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Constant Energy-surface in 2D

1st B-Z

E-k diagram

Const. Energy
Surface
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Conclusions

• Solution of Schrodinger equation is relatively easy for systems with well-
defined periodicity.

• Electrons can only sit in-specific energy bands. Effective masses and 
band gaps summarize information about possible electronic states.

• Effective mass is not a fundamental concept. There are systems for 
which effective mass can not be defined. 

• Kronig-Penney model is analytically solvable. Real band-structures are 
solved on computer. Such solutions are relatively easy – we will do HW 
problems on nanohub.org on this topic. 

• Effective mass is not a fundamental concept. There are systems for 
which effective mass can not be defined. 

• Of all the possible bands, only a few contribute to conduction. These are 
often called conduction and valence bands. 

• For 2D/3D systems, energy-bands are often difficult to visualize. E-k 
diagrams along specific direction and constant energy surfaces for 
specific bands summarize such information. 

• Most of the practical problems can only be analyzed by numerical 
solution. 
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ECE606: Solid State Devices

Lecture 5
Gerhard Klimeck

gekco@purdue.edu
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Reference: Vol. 6, Ch. 3

Presentation Outline

•Reminder – bandstructure in 1D – Brillouin Zone
•E-k diagram/constant energy surfaces in 3D 
solids

•Definition of a density of states
•Density of States for specific materials
•Conclusions
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Original 
Problem

Periodic
Structure

How do electrons move through a real crystal?
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N Wells => 2N States => 2 Bands

Vb=110meV, W=6nm, B=2nm

Vb=400meV, W=6nm, B=2nm
18
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N Wells => 2N States => 2 Bands

Vb=110meV, W=6nm, B=2nm

Vb=400meV, W=6nm, B=2nm

1 state/well => 1band

2 states/well => 2bands
19
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GaAs Well Comparison – 80 Barriers

A GaAs structure with
6nm wells, 2nm barriers
and 0.4eV barrier height
is modeled as follows,
• PPL-Periodic structure

repeated indefinitely.
• TB: 80 barriers using

tight-binding.
• TM: 80 barriers using

transfer matrices.
It can be seen that the
results of these three
approaches agree well.
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4 states per atom, N atoms
=> 4 bands, N states in each band
All states are included in the first zone
Invariant to shift by 

Brillouin Zone and Number of States
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A 1D periodic function: 

can be expanded in a Fourier series:

The Fourier components are defined on a discrete set of 
periodically arranged points (analogy: frequencies) in a 
reciprocal space to coordinate space.

3D Generalization:

( ) ( );   f x f x l l nL= + =

2 / 2
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Where hkl are integers.  G=Reciprocal lattice vector

Reciprocal Space
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2 2 2x y z

b c c a a b
k k k

a b c a b c a b c
π π π× × ×= = =

× × ×i i i

1) Define reciprocal lattice with the following vectors ….

2) Use Wigner Seitz algorithm to find the unit cell 
in the wave-vector (reciprocal) space. 

Brillouin Zone –

Allowed States in a Reciprocal Lattice

( )31( ) ( )exp
2

f r d k f k ikr
π

= ∫
� � � �� Fourier transform:

Represented real-space
with plane waves

( )( )31( ) ( )exp
2

f r R d k f k ik r R
π

+ = +∫
� �� � � � � ��

Impose periodicity in R( ) ( )f r R f r+ =
� �� �

( )exp 1ik R =
���

2k R nπ=
���

x x zk G hk kk lk= = + +
� �� � � �

Reciprocal vector G
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Brillouin Zone in Cubic Lattice …

Real Space 
Cubic Lattice Reciprocal  Lattice Brillouin Zone

2 aπa

aπ

aπ−
0

Follow W-S algorithm, but 
now for reciprocal lattice
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Brillouin Zone in Real FCC Lattices …

Real Space FCC
(for Si, Ge, GaAs)

Brillouin Zone of 

Reciprocal  Lattice
Reciprocal  Lattice

Diamond lattice and bcc are 
Fourier Transforms of each other!
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Brillouin Zone in Real FCC Lattices …

Real Space FCC
(for Si, Ge, GaAs)

Brillouin Zone of 

Reciprocal  Lattice
Reciprocal  Lattice

2π/a

0.87∗2π/a

Note unlike cubic lattice, zone edge is not at  π/a

Diamond lattice and bcc are 
Fourier Transforms of each other!
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Brillouin Zone of 

Reciprocal  Lattice
2π/a

0.87∗2π/a

Note unlike cubic lattice, zone edge is not at  π/a

Brillouine Zone is Space Filling
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Reference: Vol. 6, Ch. 3

Presentation Outline

•Reminder – bandstructure in 1D – Brillouin Zone
•E-k diagram/constant energy surfaces in 3D 
solids

•Definition of a density of states
•Density of States for specific materials
•Conclusions
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Analogy for E-k Diagram: 4D info thiough  2D Plots

Density (x,y,z)
4D information

Cut along (θ1, φ1) …

r

ρ

θ1
φ1

A series of line-sections can
Represent the 4D info in 2D plots 
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E-k along ΓΓΓΓ-X Direction

Ge
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E-k along ΓΓΓΓ-L direction

Ge
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E-k Diagram

� 3 valence bands (light hole, heavy hole, split-off)
valence bands near k=0 is essentially E ~ k2

� Minima may not be at zone center 
�(Ge: 8 L valleys, Si: 6 X valleys, and GaAs: Γ valleys)
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E-k diagram for GaAs

Direct bandgap material

Zone-edge gaps (L6-Γ8,
X6-Γ8) close to direct gap

Has important implications 
For transport 

33

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Analogy for E-k Diagram

Density (x,y,z)

Contours of density ….
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Constant-E surface for Conduction Band
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Constant E-surface …
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Four valleys inside BZ for Germanium
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Constant E-surface for Valence Band

)]([ 2222222422
xzzyyxv kkkkkkCkBAkEE +++−= ∓

Si:     A=4.29, B=0.68, C=4.87;      Ge:  A=13.38, B=8.48, C=13.15
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Reference: Vol. 6, Ch. 3

Presentation Outline

•Reminder – bandstructure in 1D – Brillouin Zone
•E-k diagram/constant energy surfaces in 3D 
solids

•Definition of a density of states
•Density of States for specific materials
•Conclusions
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Density of States

A single band has total of 

N-states

Only a fraction of states 

are occupied

How many states are 

occupied up to E?

Or equivalently…

How many states per unit 

energy ? (DOS)kk-k

E

40
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Density of States in 1-D Semiconductors
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1D-DOS
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1D-DOS

k

a

π
2

k
Na

π∆ =

E E

DOS

( )2
0

1

2

*m
DOS

E Eπ
=

−ℏ

Conservation of DOS
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Density of States in 2D Semiconductors

a
b

Show that 2D DOS is a constant independent of energy!

44



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Density of States in 3D Semiconductors
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Macroscopic Sample
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3D-DOS

k
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Conservation of DOS
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2* *m m E E
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=
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Reference: Vol. 6, Ch. 3

Presentation Outline

•Reminder – bandstructure in 1D – Brillouin Zone
•E-k diagram/constant energy surfaces in 3D 
solids

•Definition of a density of states
•Density of States for specific materials
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Density of States of GaAs: Conduction/Valence Bands
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Four valleys inside BZ for Germanium
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Ellipsoidal Bands and DOS Effective Mass
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E=const. ellipsoid

const. E

34

3 effkπ≡

2α 2β

Nel is number of equivalent ellipsoids
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DOS Effective Mass for Conduction Band 

( )1 32 3 26* * *
eff l tm m m=

( ) ( )
2 3

2

2

* *
eff eff c

c

m m E E
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Conclusions

1) E-k diagram/constant energy surfaces are simple ways to 

represent the locations where electrons can sit. They 

arise from the solution of Schrodinger equation in 

periodic lattice. 

2) E-k diagram and energy bands contain equivalent 

information. In principle, any one can be used to 

construct the other.

3) Only a fraction of the available states are occupied. The 

number of available states change with energy. DOS 

captures this variation. 

4) DOS is an important and useful characteristic of a 

material that should be understood carefully.  
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions
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k

a

π
a

π− 2
k

Na

π∆ =

E E

DOS

( )3 3 0

2 3

2* *m m E E
DOS

π
−

=
ℏ

Reminder: Momentum vs. DOS

Important things to remember:
• Momentum k entered our thinking as a quantum number
• Each quantum number is creating ONE state
• Often “just” need the number of available states in an energy range  

=> Density of States 
=> appears to be solely determined by 
»1) band edge, 
»2) effective mass
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Measurement of Band Gap

k

E

1

2

3

4

Photons are only absorbed between 
bands that have filled and empty states

E23
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rp
tio

n



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Energy Gap
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Temperature-dependent Band Gap
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states
»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps
•Reality check - Measurements of Effective Mass
•Rules of filling electronic states 
•Derivation of Fermi-Dirac Statistics: three 
techniques

•Intrinsic carrier concentration
•Conclusions
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Measurements of Effective Masses

Important things to remember:
• Full bands do not conduct –

electrons have no space to go
• Empty bands to not conduct –

there are no electrons to go around
Question:
• We are interested in the top-most 

valence band holes and the bottom-
most electron states

• We want to figure out the slope of the 
bands 

• How can we probe just one particular 
species of electrons/holes?

• We do not want to transfer them from 
one band to the next!

=> can we rotate the electrons around in 
a single band?  

k

E

3

2

1
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(kx,0)

(0,-ky)

(0,ky)

(-kx,0)

kx

Energy=constant.

kx
ky

kz

ky

Liquid He temperature …x

y

Motion in Real Space and Phase Space
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Derive the Cyclotron Formula
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For an particle in (x-y) plane with B-field in z-direction, 
the Lorentz force is …

0

0

0
0

0
0 0

2 2

1
2

2

r m*

qB

qB

m*
qB

m*

π πτ
υ

ν
τ π

ω πν

= =

≡ =

= =

0

02

q
m*

B

vπ
=
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Measurement of Effective Mass

ν0=24 GHz
(fixed)

IoutIin

B field variable …

0
0

0

0

2 2

q q
m

B B
*

vm*π
ν

π
= =

I o
u
t 
-
I i
n

BBcon

kx
ky

kz

Bval kx
ky

kz
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Effective mass in Ge

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

111 111 111 111

111 111 111 111

4 angles between B field and the ellipsoids …
Recall the HW1

B
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Derivation for the Cyclotron Formula

B

Show that 
2 2

2 2

1

c t l t

cos sin

m m m m

θ θ= +

[ ] d
F q B M

dt

υυ= × =

The Lorentz force on electrons in a B-field 

( )

( )

( )

* x
x y z z y t

y*
y z x x z t

* z
z x y y x l

d
F q B B m

dt
d

F q B B m
dt

d
F q B B m

dt

υυ υ

υ
υ υ

υυ υ

= − =

= − =

= − =

In other words, 

Given three mc and three θ,
we will Find mt, and ml
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Continued …

2
2 2 2 2 2

2

0 0 0
0

0 with  l

l

y
y t t

t* * *
c t l

d
sin cos

dt
qB qB qB

m m m

wω ω

ω

υ
υ

ω

ω ω θ θ

ω

 + = ≡ + 

≡ ≡ ≡

Differentiate (vy) and use other equations to find …

Let (B) make an angle (θ) with longitudinal axis of the 
ellipsoid (ellipsoids oriented along kz)

( )
2 2

2 2

1
*

l t tc

sin cos

m m mm

θ θ= +so that …

B0

ky

kx

kz

( ) ( )0 00x y zB B cos , B , B B sin ,θ θ= = =
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Measurement of Effective Mass

Three peaks     B1, B2, B3
Three masses   mc1,mc2,mc3
Three unique angles: 7, 65, 73 

2 2

2 2

1

tc l t

cos sin

m mm m

θ θ= +

Known θ and mc allows calculation of mt and 
ml.

[110]

B=[0.61, 0.61, 0.5]

1

02cm
qB

vπ
=
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Valence Band Effective Mass

Which peaks relate to valence band?
Why are there two valence band peaks? 
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Conclusions

1) Only a fraction of the available states are occupied. The 

number of available states change with energy. DOS 

captures this variation. 

2) DOS is an important and useful characteristic of a 

material that should be understood carefully.  

3) Experimental measurements are key to making sure that 

the theoretical calculations are correct. We will discuss 

them in the next class. 


