ECE606: Solid State Devices Lecture 4

Gerhard Klimeck gekco@purdue.edu

Catchup from last lecture

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- E-k diagram and constant energy surfaces
-Conclusions

Reference: Vol. 6, Ch. 3

- Basis State Selection
"Physical problem is based on a 1D/2D/3D periodic array of atoms
"Desired system/signal response is periodic in space
»Physical space is infinitely extended
\checkmark Can the physical space be collapsed into a different representation?
"Chose a basis system of plane waves
"New finite reciprocal space is representative of the original system
»In 2D and 3D the reciprocal space may have critical axes/symmetries
- Solution of the Schroedinger Equation
»Solution with plane waves in reciprocal space
»1D solution performed in Kroenig-Penney model (last lecture)
\checkmark Band formation
"2D/3D solution along critical paths in the reciprocal space
- Filling of the states
"States are filled from the bottom up.
» Thermal distribution will cause some disorder

		Fourier Transform Reminders
$f(x)$	$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x$	Space Mapping
$\mathrm{e}^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^{2}+\omega^{2}}$	infinite <=> infinite
$e^{-\alpha x^{2}}$	$\frac{1}{\sqrt{2 \alpha}} \cdot e^{-\frac{\omega^{2}}{4 \alpha}}$	
$\operatorname{rect}(a x)$	$\frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}\left(\frac{\omega}{2 \pi a}\right)$	finite <=> infinite
$\operatorname{tri}(a x)$	$\frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}^{2}\left(\frac{\omega}{2 \pi a}\right)$	
1	$\sqrt{2 \pi} \cdot \delta(\omega)$	Periodic $=>$ discrete
$e^{i a x}$	$\sqrt{2 \pi} \cdot \delta(\omega-a)$	
$\cos (a x)$	$\sqrt{2 \pi} \cdot \frac{\delta(\omega-a)+\delta(\omega+a)}{2}$	

\%\%\%	Fourier Transform Reminders	
$f(x)$	$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x$	Space Mapping
$\begin{aligned} & \mathrm{e}^{-a\|x\|} \\ & e^{-\alpha x^{2}} \end{aligned}$	$\begin{aligned} & \sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^{2}+\omega^{2}} \\ & \frac{1}{\sqrt{2 \alpha}} \cdot e^{-\frac{\omega^{2}}{4 a}} \end{aligned}$	infinite <=> infinite
$\begin{gathered} \operatorname{rect}(a x) \\ \operatorname{tri}(a x) \end{gathered}$	$\begin{aligned} & \frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}\left(\frac{\omega}{2 \pi a}\right) \\ & \frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}^{2}\left(\frac{\omega}{2 \pi a}\right) \end{aligned}$	finite <=> infinite
$\begin{gathered} 1 \\ e^{i a x} \\ \cos (a x) \end{gathered}$	$\begin{gathered} \sqrt{2 \pi} \cdot \delta(\omega) \\ \sqrt{2 \pi} \cdot \delta(\omega-a) \\ \sqrt{2 \pi} \cdot \frac{\delta(\omega-a)+\delta(\omega+a)}{2} \end{gathered}$	riodic => discrete

A 1D periodic function: $f(x)=f(x+l) ; \quad l=n L$ can be expanded in a Fourier series:

$$
f(x)=\sum_{n} A_{n} e^{i 2 \pi n x / L}=\sum_{g} A_{g} e^{i g x} \quad g=\frac{2 \pi n}{L}
$$

The Fourier components are defined on a discrete set of periodically arranged points (analogy: frequencies) in a reciprocal space to coordinate space.

3D Generalization:

$$
u_{n}(\mathbf{k}, \mathrm{r})=\sum_{\mathrm{G}} f_{\mathrm{G}}^{n}(\mathbf{k}) e^{i \mathbf{G} \cdot \mathbf{r}} ; \quad \mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}
$$

$\mathbf{G} \perp$ a Where $h k l$ are integers. $\mathbf{G}=$ Reciprocal lattice vector

Allowed States in a Reciprocal Lattice

$$
\left.\begin{array}{ll}
f(\vec{r})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k} \vec{r}) & \begin{array}{l}
\text { Fourier transform: } \\
\text { Represented real-space } \\
\text { with plane waves }
\end{array} \\
f(\vec{r}+\vec{R})=f(\vec{r}) & \text { Impose periodicity in } \mathbf{R}
\end{array}\right] \begin{array}{ll}
f(\vec{r}+\vec{R})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k}(\vec{r}+\vec{R})) \\
\exp (i \vec{k} \vec{R})=1 & \vec{k} \vec{R}=2 \pi n \\
\qquad \vec{k}=\vec{G}=h \vec{k}_{x}+k \vec{k}_{x}+l \vec{k}_{z} \quad \text { Reciprocal vector } \mathbf{G}
\end{array}
$$

1) Define reciprocal lattice with the following vectors

$$
k_{x}=2 \pi \frac{b \times c}{|a \cdot b \times c|} \quad k_{y}=2 \pi \frac{c \times a}{|a \cdot b \times c|} \quad k_{z}=2 \pi \frac{a \times b}{|a \cdot b \times c|}
$$

2) Use Wigner Seitz algorithm to find the unit cell in the wave-vector (reciprocal) space.

Primitive cell in real space

$1^{\text {st }} \mathrm{B}-\mathrm{Z}$

$$
-\frac{2 \pi}{L}-\frac{1}{2} \quad k_{x}
$$

E-k diagram

E-k diagram in 2D solids

Real-space
$1^{\text {st }} \mathrm{B}-\mathrm{Z}$

E-k diagram

- Solution of Schrodinger equation is relatively easy for systems with welldefined periodicity.
- Electrons can only sit in-specific energy bands. Effective masses and band gaps summarize information about possible electronic states.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Kronig-Penney model is analytically solvable. Real band-structures are solved on computer. Such solutions are relatively easy - we will do HW problems on nanohub.org on this topic.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Of all the possible bands, only a few contribute to conduction. These are often called conduction and valence bands.
- For 2D/3D systems, energy-bands are often difficult to visualize. E-k diagrams along specific direction and constant energy surfaces for specific bands summarize such information.
- Most of the practical problems can only be analyzed by numerical solution.

ECE606: Solid State Devices Lecture 5
Gerhard Klimeck gekco@purdue.edu

-Reminder - bandstructure in 1D - Brillouin Zone
-E-k diagram/constant energy surfaces in 3D solids
-Definition of a density of states
-Density of States for specific materials
-Conclusions

Reference: Vol. 6, Ch. 3

A 1D periodic function: $f(x)=f(x+l) ; \quad l=n L$ can be expanded in a Fourier series:

$$
f(x)=\sum_{n} A_{n} e^{i 2 \pi n x / L}=\sum_{g} A_{g} e^{i g x} \quad g=\frac{2 \pi n}{L}
$$

The Fourier components are defined on a discrete set of periodically arranged points (analogy: frequencies) in a reciprocal space to coordinate space.

3D Generalization:

$$
u_{n}(\mathbf{k}, \mathrm{r})=\sum_{\mathrm{G}} f_{\mathrm{G}}^{n}(\mathbf{k}) e^{i \mathbf{G} \cdot \mathbf{r}} ; \quad \mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}
$$

$\mathbf{G} \perp$ a Where $h k l$ are integers. $\mathbf{G}=$ Reciprocal lattice vector

Allowed States in a Reciprocal Lattice

$$
\left.\begin{array}{ll}
f(\vec{r})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k} \vec{r}) & \begin{array}{l}
\text { Fourier transform: } \\
\text { Represented real-space } \\
\text { with plane waves }
\end{array} \\
f(\vec{r}+\vec{R})=f(\vec{r}) & \text { Impose periodicity in } \mathbf{R}
\end{array}\right] \begin{array}{ll}
f(\vec{r}+\vec{R})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k}(\vec{r}+\vec{R})) \\
\exp (i \vec{k} \vec{R})=1 \quad \vec{k} \vec{R}=2 \pi n &
\end{array}
$$

$$
\vec{k}=\vec{G}=h \vec{k}_{x}+k \vec{k}_{x}+l \vec{k}_{z} \quad \text { Reciprocal vector } \mathbf{G}
$$

1) Define reciprocal lattice with the following vectors

$$
k_{x}=2 \pi \frac{b \times c}{|a \cdot b \times c|} \quad k_{y}=2 \pi \frac{c \times a}{|a \cdot b \times c|} \quad k_{z}=2 \pi \frac{a \times b}{|a \cdot b \times c|}
$$

2) Use Wigner Seitz algorithm to find the unit cell in the wave-vector (reciprocal) space.

Brillouin Zone in Cubic Lattice ...

Real Space Cubic Lattice

Reciprocal Lattice Brillouin Zone

Follow W-S algorithm, but now for reciprocal lattice

*%%
*%%
Real Space FCC
(for Si, Ge, GaAs) ${ }^{\text {Reciprocal Lattice }}$

Note unlike cubic lattice, zone edge is not at π / a

Brillouine Zone is Space Filling

Note unlike cubic lattice, zone edge is not at π / a

Presentation Outline
-Reminder - bandstructure in 1D - Brillouin Zone
-E-k diagram/constant energy surfaces in 3D solids

- Definition of a density of states
- Density of States for specific materials
- Conclusions

Reference: Vol. 6, Ch. 3

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- 3 valence bands (light hole, heavy hole, split-off) valence bands near $k=0$ is essentially $E \sim k^{2}$
- Minima may not be at zone center
-(Ge: 8 L valleys, $\mathrm{Si}: 6 \mathrm{X}$ valleys, and GaAs : Γ valleys)

$$
E=E_{c}+A k_{1}^{2}+B\left(k_{2}^{2}+k_{3}^{2}\right) \quad E=E_{c}+A\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)
$$

$$
\frac{1}{m_{i j}}=\frac{1}{\hbar^{2}} \frac{\partial^{2} E}{\partial k_{i} \partial k_{j}}
$$

$$
\frac{1}{m_{11}}=\frac{2 A}{\hbar^{2}} ; \frac{1}{m_{22}}=\frac{1}{m_{33}}=\frac{2 B}{\hbar^{2}} ; \quad \frac{1}{m_{i j}(i \neq j)}=0 \quad \frac{1}{m_{11}}=\frac{1}{m_{22}}=\frac{1}{m_{33}}=2 A ; \quad \frac{1}{m_{i j}(i \neq j)}=0
$$

- Reminder - bandstructure in 1D - Brillouin Zone
-E-k diagram/constant energy surfaces in 3D solids
-Definition of a density of states
- Density of States for specific materials
- Conclusions

Reference: Vol. 6, Ch. 3

States between $E_{1}+\Delta E \& E_{1}=2 \times \frac{\Delta k}{\delta k}$

$$
=2 \times \frac{\Delta k}{2 \pi / N a}
$$

States/unit energy @ $E_{1}=\frac{N a}{\pi} \frac{\Delta k}{\Delta E}$

States/unit energy @ $E=\frac{N a}{\pi} \frac{\Delta k}{\Delta E}$

$$
\begin{aligned}
E-E_{0} & =\frac{\hbar^{2} k^{2}}{2 m^{*}} \Rightarrow k=\sqrt{\frac{2 m^{*}\left(E-E_{0}\right)}{\hbar^{2}}} \\
\frac{d k}{d E} & =\sqrt{\frac{m^{*}}{2 \hbar^{2}\left(E-E_{0}\right)}}
\end{aligned}
$$

States/unit energy @ $E=\frac{L}{\pi} \sqrt{\frac{m^{*}}{2 \hbar^{2}\left(E-E_{0}\right)}}$

States/unit energy/unit length @ E

$$
\equiv D O S=\frac{1}{\pi} \sqrt{\frac{m^{*}}{2 \hbar^{2}\left(E-E_{0}\right)}}
$$

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Conservation of DOS

Show that 2D DOS is a constant independent of energy!

> States between $E_{1}+\Delta E \& E_{1}$
> $=\frac{\frac{4}{3} \pi(k+d k)^{3}-\frac{4}{3} \pi k^{3}}{\frac{2 \pi}{L} \frac{2 \pi}{W} \frac{2 \pi}{H}}=\frac{V}{2 \pi^{2}} k^{2} \Delta k$

States/unit energy @ $E=\frac{V}{2 \pi^{2}} k^{2} \frac{\Delta k}{d E}$
$E-E_{0}=\frac{\hbar^{2} k^{2}}{2 m^{*}} \Rightarrow k=\sqrt{\frac{2 m^{*}\left(E-E_{0}\right)}{\hbar^{2}}} \Rightarrow \frac{d k}{d E}=\sqrt{\frac{m^{*}}{2 \hbar^{2}\left(E-E_{0}\right)}}$
Macroscopic Sample

States/unit energy/unit volume @ E_{1}

$$
D O S=\frac{m^{*}}{2 \pi^{2} \hbar^{3}} \sqrt{2 m^{*}\left(E-E_{0}\right)}
$$

3D-DOS

Conservation of DOS

Presentation Outline
-Reminder - bandstructure in 1D - Brillouin Zone
-E-k diagram/constant energy surfaces in 3D solids

- Definition of a density of states
- Density of States for specific materials

Reference: Vol. 6, Ch. 3

$$
g_{c}(E)=\frac{m_{n}^{*} \sqrt{2 m_{n}^{*}\left(E-E_{c}\right)}}{2 \pi^{2} \hbar^{3}}
$$

$$
g_{v}(E)=\left\{\begin{array}{l}
\frac{m_{h h}^{*} \sqrt{2 m_{h h}^{*}\left(E-E_{v}\right)}}{2 \pi^{2} \hbar^{3}} \\
\frac{m_{l h}^{*} \sqrt{2 m_{l h}^{*}\left(E-E_{v}\right)}}{2 \pi^{2} \hbar^{3}}
\end{array}\right.
$$

$$
m_{e f f}^{*}=4^{2 / 3}\left(m_{l}^{*} m_{t}^{* 2}\right)^{1 / 3}
$$

$$
m_{e f f}^{*}=6^{2 / 3}\left(m_{l}^{*} m_{t}^{* 2}\right)^{1 / 3}
$$

$$
g_{c}(E)=\frac{m_{e f f}^{*} \sqrt{2 m_{e f f}^{*}\left(E-E_{c}\right)}}{2 \pi^{2} \hbar^{3}}
$$

$$
g_{c}(E)=\frac{m_{e f f}^{*} \sqrt{2 m_{e f f}^{*}\left(E-E_{c}\right)}}{2 \pi^{2} \hbar^{3}}
$$

Ge

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

1) E-k diagram/constant energy surfaces are simple ways to represent the locations where electrons can sit. They arise from the solution of Schrodinger equation in periodic lattice.
2) E-k diagram and energy bands contain equivalent information. In principle, any one can be used to construct the other.
3) Only a fraction of the available states are occupied. The number of available states change with energy. DOS captures this variation.
4) DOS is an important and useful characteristic of a material that should be understood carefully.

ECE606: Solid State Devices Lecture 6
 Gerhard Klimeck gekco@purdue.edu

-Reminder - Density of states
"Possible states as a function of Energy
-Reality check - Measurements of Bandgaps
-Reality check - Measurements of Effective Mass
-Rules of filling electronic states

- Derivation of Fermi-Dirac Statistics: three techniques
- Intrinsic carrier concentration
-Conclusions

Reference: Vol. 6, Ch. 3 \& 4

Reminder: Momentum vs. DOS

Important things to remember:

- Momentum k entered our thinking as a quantum number
- Each quantum number is creating ONE state
- Often "just" need the number of available states in an energy range
=> Density of States
=> appears to be solely determined by
»1) band edge,
P »2) effective mass

Photons are only absorbed between bands that have filled and empty states

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Derive the Cyclotron Formula

nootlero

$$
m^{*}=\frac{q B_{0}}{2 \pi v_{0}}
$$

For an particle in ($x-y$) plane with B-field in z-direction, the Lorentz force is ...

$$
\begin{array}{ll}
\frac{m^{*} v^{2}}{r_{0}}=q v \times B_{z}= & q v B_{z} \\
v=\frac{q B_{0} r_{0}}{m^{*}} & \tau=\frac{2 \pi r_{0}}{v}=\frac{2 \pi m^{*}}{q B_{0}} \\
& v_{0} \equiv \frac{1}{\tau}=\frac{q B_{0}}{2 \pi m^{*}} \\
\omega_{0}=2 \pi v_{0}=\frac{q B_{0}}{m^{*}}
\end{array}
$$

$$
v_{0}=\frac{q B_{0}}{2 \pi m^{*}} \quad m^{*}=\frac{q B_{0}}{2 \pi v_{0}}
$$

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

[īī] [ī1] [ī1] [īi]
[11ī] [111] [$\overline{111}]$ [111]

4 angles between B field and the ellipsoids ... Recall the HW1

Show that $\frac{1}{m_{c}{ }^{2}}=\frac{\cos ^{2} \theta}{m_{t}{ }^{2}}+\frac{\sin ^{2} \theta}{m_{l} m_{t}}$
Given three m_{c} and three θ, we will Find m_{t}, and m_{l}

The Lorentz force on electrons in a B-field

$$
F=q v \times B=[M] \frac{d v}{d t}
$$

In other words,

$$
\begin{aligned}
& F_{x}=q\left(v_{y} B_{z}-v_{z} B_{y}\right)=m_{t}^{*} \frac{d v_{x}}{d t} \\
& F_{y}=q\left(v_{z} B_{x}-v_{x} B_{z}\right)=m_{t}^{*} \frac{d v_{y}}{d t} \\
& F_{z}=q\left(v_{x} B_{y}-v_{y} B_{x}\right)=m_{l}^{*} \frac{d v_{z}}{d t}
\end{aligned}
$$

Let (B) make an angle (θ) with longitudinal axis of the ellipsoid (ellipsoids oriented along k_{z})

$$
B_{x}=B_{0} \cos (\theta), B_{y}=0, B_{z}=B_{0} \sin (\theta),
$$

Differentiate $\left(\mathrm{v}_{\mathrm{y}}\right)$ and use other equations to find ...

$$
\begin{array}{r}
\frac{d^{2} v_{y}}{d t^{2}}+v_{y} \omega^{2}=0 \quad \text { with } \omega^{2} \equiv\left[\omega_{t} w_{l} \sin ^{2} \theta+\omega_{t}^{2} \cos ^{2} \theta\right] \\
\omega_{0} \equiv \frac{q B_{0}}{m_{c}^{*}} \quad \omega_{t} \equiv \frac{q B_{0}}{m_{t}^{*}} \quad \omega_{l} \equiv \frac{q B_{0}}{m_{l}^{*}} \\
\text { so that } \ldots
\end{array} \frac{1}{\left(m_{c}^{*}\right)^{2}}=\frac{\sin ^{2} \theta}{m_{l} m_{t}}+\frac{\cos ^{2} \theta}{m_{t}{ }^{2}} .
$$

Which peaks relate to valence band? Why are there two valence band peaks?

1) Only a fraction of the available states are occupied. The number of available states change with energy. DOS captures this variation.
2) DOS is an important and useful characteristic of a material that should be understood carefully.
3) Experimental measurements are key to making sure that the theoretical calculations are correct. We will discuss them in the next class.
