

	Fourier Transform Reminders	
f(x)	$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-i\omega x}dx$	Space Mapping
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^2 + \omega^2}$	infinite <=> infinite
$e^{-\alpha x^2}$	$rac{1}{\sqrt{2lpha}}\cdot e^{-rac{\omega^2}{4lpha}}$	
rect(ax)	$\frac{1}{\sqrt{2\pi a^2}}\cdot \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)$	finite <=> infinite
tri(ax)	$\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}^2\left(\frac{\omega}{2\pi a}\right)$	
1	$\sqrt{2\pi} \cdot \delta(\omega)$	
e^{iax}	$\sqrt{2\pi} \cdot \delta(\omega - a)$	Periodic => discrete
$\cos(ax)$	$\sqrt{2\pi} \cdot \frac{\delta(\omega-a) + \delta(\omega+a)}{2}$	

orito normalititions	Fourier	Transform Reminders
f(x)	$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-i\omega x}dx$	Space Mapping
$e^{-a x }$	$\sqrt{rac{2}{\pi}}\cdotrac{a}{a^2+\omega^2}$	infinite <=> infinite
$e^{-\alpha x^2}$	$\frac{1}{\sqrt{2\alpha}} \cdot e^{-\frac{\omega^2}{4\alpha}}$	
rect(ax)	$\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)$	finite <=> infinite
tri(ax)	$\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}^2\left(\frac{\omega}{2\pi a}\right)$	
1	$\sqrt{2\pi} \cdot \delta(\omega)$	
e^{iax}	$\sqrt{2\pi} \cdot \delta(\omega - a)$	Periodic => discrete
$\cos(ax)$	$\sqrt{2\pi} \cdot \frac{\delta(\omega-a) + \delta(\omega+a)}{2}$	<u>a)</u>

ന്റെ Reciprocal Space	e	
A 1D periodic function: $f(x) = f(x+l); l = nL$		
can be expanded in a Fourier series:		
$f(x) = \sum_{n} A_{n} e^{i2\pi nx/L} = \sum_{g} A_{g} e^{igx} g = \frac{2\pi n}{L}$ The Fourier components are defined on a discrete set of periodically arranged points (analogy: frequencies) in a reciprocal space to coordinate space.		
3D Generalization:		
$u_n(\mathbf{k},\mathbf{r}) = \sum_{\mathbf{G}} f_{\mathbf{G}}^n(\mathbf{k}) e^{i\mathbf{G}\cdot\mathbf{r}}; \mathbf{G} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$		
$\mathbf{G} \perp \mathbf{a}$ Where <i>hkl</i> are integers. \mathbf{G} =Reciprocal lattice vector	r	
PURDUE Klimeck - ECE606 Fall 2012 - r Notes adopted from Dragica Vasileska, ASU	3	

ငိုင်ငံကို Conclusion	าร
 Solution of Schrodinger equation is relatively easy for systems with well defined periodicity. 	-
• Electrons can only sit in-specific energy bands. Effective masses and band gaps summarize information about possible electronic states.	
 Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined. 	
 Kronig-Penney model is analytically solvable. Real band-structures are solved on computer. Such solutions are relatively easy – we will do HW problems on nanohub.org on this topic. 	
• Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.	
• Of all the possible bands, only a few contribute to conduction. These are often called conduction and valence bands.	Э
• For 2D/3D systems, energy-bands are often difficult to visualize. E-k diagrams along specific direction and constant energy surfaces for specific bands summarize such information.	
 Most of the practical problems can only be analyzed by numerical solution. 	
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam	14

MCA novelUlarg	Reciprocal Space
A 1D periodic function: $f(x) = f(x)$ can be expanded in a Fourier series: $f(x) = \sum_{n} A_n e^{i2\pi nx/L} = \sum_{g} A_g e^{igx}$ The Fourier components are defined on a di periodically arranged points (analogy: frequere reciprocal space to coordinate space.	$g = \frac{2\pi n}{L}$ screte set of
3D Generalization: $u_n(\mathbf{k},\mathbf{r}) = \sum_{\mathbf{G}} f_{\mathbf{G}}^n(\mathbf{k}) e^{i\mathbf{G}\cdot\mathbf{r}}; \mathbf{G} = h\mathbf{I}$	$\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$
G $\mathbf{G} \perp \mathbf{a}$ Where <i>hkl</i> are integers. \mathbf{G} =Reciping <u>PURDUE</u> Klimeck - ECE606 Fall 2012 - r Notes adopted from Dragica Vasileska	procal lattice vector

တို့စ	Conclusion	ıs
1)	E-k diagram/constant energy surfaces are simple ways to represent the locations where electrons can sit. They arise from the solution of Schrodinger equation in periodic lattice.	
2)	E-k diagram and energy bands contain equivalent information. In principle, any one can be used to construct the other.	
3)	Only a fraction of the available states are occupied. The number of available states change with energy. DOS captures this variation.	
4)	DOS is an important and useful characteristic of a material that should be understood carefully.	
PURDUE	Klimeck - ECE606 Fall 2012 - notes adopted from Alam	52

orition CCC	Presentation Outline	
 Reminder – Density of states »Possible states as a function of Reality check - Measurements Reality check - Measurements Rules of filling electronic state Derivation of Fermi-Dirac Stat techniques Intrinsic carrier concentration Conclusions 	s of Bandgaps s of Effective Mass s	
Reference: Vol. 6, Ch. 3 & 4		
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam	*	

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alameter 4 and the set of the time for the time for the time for the term of ter

