ECE606: Solid State Devices
Lecture 4
Gerhard Klimeck gekco@purdue.edu

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- E-k diagram and constant energy surfaces
-Conclusions

Reference: Vol. 6, Ch. 3

\%\% R Reminder Transmission through Repeated wells

2 barriers =>1 resonance

3 barriers =>2 resonance
n barriers =>n-1 resonance

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from

As the number of barriers are increased more and more energy resonances begin to appear and energy bands are formed.

As the number of barriers is increased the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).

But N atoms have two 2 N unknown constants to find
For large N, isn't there a better way ?

1) $\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0$
2) $\psi(x=-\infty)=0$
$\psi(x=+\infty)=0$
3) $\left.\psi\right|_{x=x_{B}^{-}}=\left.\psi\right|_{x=x_{B}^{+}}$
$\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{-}}=\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{+}}$
4) $\operatorname{Det}($ coefficient matix $)=0$

Set 2N-2 equations for 2N-2 unknowns

Imposed Boundary Conditions
N is very large for crystal, but changing steps 2 and 3 a little bit we can still solve the problem in a few minutes

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- E-k diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3

$$
|\psi(x)|^{2}=|\psi(x+p)|^{2} \quad \Rightarrow \quad \psi(x+p)=\psi(x) \mathrm{e}^{i k L}
$$

O\% ACM Phase-factor for N-cells nandlbeng

$$
\begin{aligned}
\psi[x+L]=\psi(x) e^{i k L} \quad \psi[x+2 L] & =\psi(x+L) e^{i k L} \\
& =\psi(x) e^{i k L \times 2} \\
\psi[x+N L] & =\psi(x) e^{i k L N}
\end{aligned}
$$

$$
\left.\begin{array}{lc}
\left.\psi\right|_{x=0^{-}}=\left.\psi\right|_{x=0^{+}} & \beta \equiv i \sqrt{2 m\left(U_{0}-E\right) / \hbar^{2}} \\
\left.\frac{d \psi}{d x}\right|_{x=0^{-}}=\left.\frac{d \psi}{d x}\right|_{x=0^{+}} & \alpha \equiv \sqrt{2 m E / \hbar^{2}} \\
B_{a}=B_{b} & \begin{array}{l}
\psi_{b}=A_{b} \sin \beta x \\
+B_{b} \cos \beta x
\end{array} \\
\alpha A_{a}=\beta A_{b} & \psi_{a}=A_{a} \sin \alpha x \\
+B_{a} \cos \alpha x
\end{array}\right] . . .
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
A_{a} \sin \alpha a+B_{a} \cos \alpha a= \\
e^{i k(a+b)}\left[-A_{b} \sin \beta b+B_{b} \cos \beta b\right]
\end{array} \quad 4\right) \\
& \begin{array}{l}
\alpha A_{a} \sin \alpha a-\alpha B_{a} \cos \alpha a= \\
e^{i k(a+b)}\left[\beta A_{b} \sin \beta b+\beta B_{b} \cos \beta b\right]
\end{array}
\end{aligned} \begin{array}{llll}
0 & 1 & 0 & -1 \\
\alpha & 0 & \beta & 0 \\
* & * & \\
* & \\
\frac{1-2 \xi}{2 \xi \sqrt{1-\xi}} \times \ldots \ldots \ldots . .=\cos k L
\end{array} \quad \xi \equiv \frac{E}{U_{0}} \quad \alpha_{0} \equiv \sqrt{\frac{2 m U_{0}}{\hbar^{2}}}
$$

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- E-k diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3

Right Hand side is a set of \mathbf{N} flat lines between -1 and 1 Left Hand side is an ocillatory function with damping

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Oion

E-k comparison

An InAs structure with 6 nm wells, 2 nm barriers and 0.4 eV barrier height is modeled as follows,

- PPL-Periodic structure repeated indefinitely.
- TB: 30 barriers using tight-binding.
- TM: 30 barriers using transfer matrices.
It can be seen that the results of these three approaches agree well.

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- E-k diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3

$$
\begin{aligned}
& \text { \%\%ㅇำ Group Velocity for a Given Band } \\
& \text { arnelluara } \\
& \psi(x, t)=A e^{i k x-i \frac{E_{t}}{\hbar}}\left[1+e^{i(\Delta k) x-i\left(\frac{\Delta E}{\hbar}\right) t}\right]=A e^{i k x-\frac{E_{t}}{\hbar} t}\left[1+e^{i x c o n s t .}\right] \begin{array}{l}
p=\hbar k \text { momentum } \\
F=m a=\frac{d p}{d t} \text { force }
\end{array} \\
& {\left[x \Delta k-t \frac{\Delta E}{\hbar}\right]=\text { constant } .} \\
& \frac{d}{d t}\left[x \Delta k-t \frac{\Delta E}{\hbar}\right]=\frac{d}{d t} \text { (constant) } \\
& \frac{d x}{d t} \Delta k-\frac{\Delta E}{\hbar}=0 \rightarrow \frac{d x}{d t}=\frac{1}{\hbar} \frac{\Delta E}{\Delta k} \\
& v=\frac{d x}{d t}=\frac{1}{\hbar} \frac{d E}{d k} \\
& a=\frac{d v}{d t}=\frac{1}{\hbar} \frac{d}{d t}\left[\frac{d E}{d k}\right]=\frac{1}{\hbar} \frac{d}{d t}\left[\frac{d E}{d k}\right][1]=\frac{1}{\hbar} \frac{d}{d t}\left[\frac{d E}{d k}\right]\left[\frac{1}{\hbar} \frac{d(\hbar k)}{d k}\right] \\
& a=\frac{1}{\hbar^{2}} \frac{d^{2} E}{d^{2} k} \frac{d(\hbar k)}{d t}=\frac{1}{\hbar^{2}} \frac{d^{2} E}{d^{2} k} \frac{d p}{d t}=\frac{1}{m^{*}} F \quad m^{*}=\left[\frac{1}{\hbar^{2}} \frac{d^{2} E}{d^{2} k}\right]^{-1}
\end{aligned}
$$

Integral description of the momentum and position change of wavepackets
Do not need effective mass
=> Effective mass is not a critical physical property!
=> Graphene is a material with such linear dispersion!

Partial filling can be achieved by:

- Optical excitation
- Thermal excitation
- Doping + a little thermal excitation

Empty bands carry no current
Full bands carry no current
Let's imagine there is a way to get some electrons from the valence band into the conduction band!

Presentation Outline

- Schrodinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
-E-k diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3

		Fourier Transform Reminders
$f(x)$	$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x$	Space Mapping
$\mathrm{e}^{-a\|x\|}$	$\sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^{2}+\omega^{2}}$	infinite <=> infinite
$e^{-\alpha x^{2}}$	$\frac{1}{\sqrt{2 \alpha}} \cdot e^{-\frac{\omega^{2}}{4 \alpha}}$	
$\operatorname{rect}(a x)$	$\frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}\left(\frac{\omega}{2 \pi a}\right)$	finite <=> infinite
$\operatorname{tri}(a x)$	$\frac{1}{\sqrt{2 \pi a^{2}}} \cdot \operatorname{sinc}^{2}\left(\frac{\omega}{2 \pi a}\right)$	
1	$\sqrt{2 \pi} \cdot \delta(\omega)$	
$e^{i a x}$	$\sqrt{2 \pi} \cdot \delta(\omega-a)$	Periodic $=>$ discrete
$\cos (a x)$	$\sqrt{2 \pi} \cdot \frac{\delta(\omega-a)+\delta(\omega+a)}{2}$	

A 1D periodic function: $f(x)=f(x+l) ; \quad l=n L$ can be expanded in a Fourier series:

$$
f(x)=\sum_{n} A_{n} e^{i 2 \pi n x / L}=\sum_{g} A_{g} e^{i g x} \quad g=\frac{2 \pi n}{L}
$$

The Fourier components are defined on a discrete set of periodically arranged points (analogy: frequencies) in a reciprocal space to coordinate space.

3D Generalization:

$$
u_{n}(\mathbf{k}, \mathrm{r})=\sum_{\mathrm{G}} f_{\mathrm{G}}^{n}(\mathbf{k}) e^{i \mathbf{G} \cdot \mathbf{r}} ; \quad \mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}
$$

$\mathbf{G} \perp$ a Where $h k l$ are integers. $\mathbf{G}=$ Reciprocal lattice vector

$$
\begin{aligned}
& f(\vec{r})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k} \vec{r}) \quad \begin{array}{l}
\text { Fourier transform: } \\
\text { Represented real-space }
\end{array} \\
& f(\vec{r}+\vec{R})=f(\vec{r}) \quad l l \\
& f(\vec{r}+\vec{R})=1 / \sqrt{2 \pi} \int d^{3} \vec{k} f(\vec{k}) \exp (i \vec{k}(\vec{r}+\vec{R})) \\
& \exp (i \vec{k} \vec{R})=1 \quad \vec{k} \vec{R}=2 \pi n \\
& \vec{k}=\vec{G}=h \vec{k}_{x}+k \vec{k}_{x}+l \vec{k}_{z} \quad \text { Reciprocal vector } \mathbf{G} \\
& \text { 1) Define reciprocal lattice with the following vectors } \\
& k_{x}=2 \pi \frac{b \times c}{|a \cdot b \times c|} \quad k_{y}=2 \pi \frac{c \times a}{|a \cdot b \times c|} \quad k_{z}=2 \pi \frac{a \times b}{|a \cdot b \times c|} \\
& \text { 2) Use Wigner Seitz algorithm to find the unit cell } \\
& \text { in the wave-vector (reciprocal) space. }
\end{aligned}
$$

Primitive cell in real space

Brillouin Zone for One-dimensional Solids
 nencluzere

$1^{\text {st }} \mathrm{B}-\mathrm{Z}$

E-k diagram


```
1st B-Z
```


E-k diagram

Const. Energy
Surface

Conclusions

- Solution of Schrodinger equation is relatively easy for systems with welldefined periodicity.
- Electrons can only sit in-specific energy bands. Effective masses and band gaps summarize information about possible electronic states.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Kronig-Penney model is analytically solvable. Real band-structures are solved on computer. Such solutions are relatively easy - we will do HW problems on nanohub.org on this topic.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Of all the possible bands, only a few contribute to conduction. These are often called conduction and valence bands.
- For 2D/3D systems, energy-bands are often difficult to visualize. E-k diagrams along specific direction and constant energy surfaces for specific bands summarize such information.
- Most of the practical problems can only be analyzed by numerical solution.

