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Getting Back to Crystals

Original 
Problem

Periodic
Structure

Electrons in periodic
potential: Problem 
we want to solve
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Reminder Transmission through Repeated wells

2 barriers =>1 resonance 

3 barriers =>2 resonance 

n barriers =>n-1 resonance 

As the number of 
barriers are 
increased more 
and more energy 
resonances begin 
to appear and 
energy bands are 
formed.

20 barriers

30 barriers

10 barriers
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Comparison with Periodic structure

e

Repeated indefinitely

As the number of barriers is increased the electrons see no difference between
the actual structure and a structure that is simply modeled as being repeated
indefinitely (Periodic).

As the number of barriers is increased the electrons see no difference between
the actual structure and a structure that is simply modeled as being repeated
indefinitely (Periodic).

-∞ ∞

Finite barriers
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Finally an (almost) Real Problem …

U(x)

E

1 1 1n n nA sin kx B cos kxψ + + += +
x x

n n nC e D eα αψ −= +

But  N atoms have two 2N unknown constants to find ….   
For large N, isn’t there a better way ?   

a b

L=a+b
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( ) 0

( ) 0
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x

ψ
ψ

= −∞ =
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d 2ψ
dx2

+ k 2ψ = 0

B B

B B

x x x x

x x x x

d d

dx dx

ψ ψ

ψ ψ

− +

− +

= =

= =

=

=

1) 

2)

3)

Set 2N-2  equations for 
2N-2 unknowns

Det(coefficient matix)=04)

N is very large for crystal, but changing  steps 2 and 3 
a little bit we can still solve the problem in a few minutes!  

Four Steps of Finding Energy Levels 

for Closed Systems

Imposed Boundary Conditions
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Periodic U(x) and Bloch’s Theorem 

U(x)

E

2 2
( x ) ( x p )ψ ψ= +

U(x)=U(x+a+b)=U(x+L)

a b

( ) ( )eikLx p xψ ψ+ =

not our old (k)
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Phase-factor for N-cells

E

1 3

N

U(x)

 ( )[ ] ikLx ex L ψψ =+  ( )[ 2 ] ikLx L x eLψψ +=+

( )xψ ( )x Lψ +
( 2 )x Lψ +

 ] ( )[ ikLNNL xx eψψ =+

( )x NLψ +

2

2( ) ikLx eψ ×=
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Step 2: Periodic Boundary Condition

E

[ ] ( ) ikLNx NL x eψ ψ+ =
21ikLN i ne e π±= ≡

1
23

N-1

1 2 3

N-1

2
..... 1,0,1,....

2 2

n N N
k n

NL

π= ± = − −

U(x)

max min,k k
L L

π π= = −
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Step 3:  Boundary Conditions

0 a-b

sin

cos
a a

a

A x

B x

ψ α
α

=
+

sin

cos
b b

b

A x

B x

ψ β
β

=
+

2 2
02 ( ) 2i m U E mEβ α≡ − ≡ℏ ℏ

a b

a b

B B

A Aα β
=

=

0 0

0 0

x x

x x

d d

dx dx

ψ ψ

ψ ψ
− +

− +

= =

= =

=

=

ik L
a bx a x b

ik La b

x a x b

e

d d
e

dx dx

ψ ψ

ψ ψ
= =−

= =−

=

=

( )

( )

sin cos

[ sin cos ]

sin cos

[ sin cos ]

a a

ik a b
b b

a a

ik a b
b b

A a B a

e A b B b

A a B a

e A b B b

α α
β β

α α α α
β β β β

+

+

+ =

− +

− =

+
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Step 4:  Det(matrix)=0 for Energy-levels

0 a-b

sin

cos
a a

a

A x

B x

ψ α
α

=
+

sin

cos
b b

b

A x

B x

ψ β
β

=
+

a b

a b

B B

A Aα β
=

=

( )

( )

sin cos

[ sin cos ]

sin cos

[ sin cos ]

a a

ik a b
b b

a a

ik a b
b b

A a B a

e A b B b

A a B a

e A b B b

α α
β β

α α α α
β β β β

+

+

+ =

− +

− =

+
* *

*

0 1 0 0

0

0

0

1

0 0
a

a

b

b

A

B

A

B

α β
    
    
    =
    
    

    

−4)

0
0 2

0

21 2
............ cos

2 1

mUE
kL

U

ξ ξ α
ξ ξ

− × = ≡ ≡
− ℏ
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Graphical solution to Energy Levels

1 2
............

2 1
coskL

ξ
ξ ξ

− =×
−

ζ=E/U

2
..... 1,0,1,....

2 2

n N N
k n

NL

π= ± = − −

k=0
kL=2πn/N

1

-1

Right Hand side is a set of N flat lines between -1 and 1

Left Hand side is an ocillatory function with damping
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Energy Band Diagram

ζ=E/U

0 k

k=0

k=2π/NL

ζ=E/U
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Brillouin Zone and Number of States

m mx ina

2
..... 1,0,1,....

2 2

2

2

n N N
k n

NL

States L N
band k

NL

kk

π

π

π

= ± = − −

−= = =
∆

k

L

πL

π−
2

k
NL

π∆ =

E

4 states per atom, N atoms
=> 4 bands, N states in each band
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GaAs Well Comparison – 30 Barriers

A GaAs structure with
6nm wells, 2nm barriers
and 0.4eV barrier height
is modeled as follows,
• PPL-Periodic structure

repeated indefinitely.
• TB: 30 barriers using

tight-binding.
• TM: 30 barriers using

transfer matrices.
It can be seen that the
results of these three
approaches agree well.
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GaAs Well Comparison – 80 Barriers

A GaAs structure with
6nm wells, 2nm barriers
and 0.4eV barrier height
is modeled as follows,
• PPL-Periodic structure

repeated indefinitely.
• TB: 80 barriers using

tight-binding.
• TM: 80 barriers using

transfer matrices.
It can be seen that the
results of these three
approaches agree well.
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InAs Well Comparison – 30 Barriers

An InAs structure with
6nm wells, 2nm barriers
and 0.4eV barrier height
is modeled as follows,
• PPL-Periodic structure

repeated indefinitely.
• TB: 30 barriers using

tight-binding.
• TM: 30 barriers using

transfer matrices.
It can be seen that the
results of these three
approaches agree well.
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Key Summary

• Finite superlattice with large number 
of repeated cells approaches the 
periodic potential model
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Wave Packet and Group Velocity

k

( )
( )

( )
1

EE i k

E E
i k k x iE

i

x i t

kx i t

i t

t

ikx

Ae Ae

A

x t

e

,

e

ψ
+∆ +∆ −

∆ ∆ −−  

 
 

−

 

= +

=
 

+ 
  

ℏ

ℏ ℏ

ℏ

t1

t2
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Group Velocity for a Given Band

( )
( )

1
E

i k x iikx t tE
i

x, Ae etψ
∆ ∆ −  
 

−  
= + 

  

ℏℏ

t1

t2

constant.
E

x k t
∆ ∆ − =  ℏ

1d d dE
a

dt dt dk

υ  = =   ℏ

1
E

ikx i t i const .Ae e
− × = + 
ℏ
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d E d

x k t
dt dt

∆ ∆ − =  ℏ

1dx dE

dt dk
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ℏ

1
0

dx E dx E
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∆ℏ ℏ
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ℏ
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  =      

ℏ

ℏ ℏ

p k= ℏ
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ℏ
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 ℏ
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Effective Mass for a Given Band

1 E

k
υ ∆=

∆ℏ

2

2 2

1 1 d E

m* dk
=
ℏ

k

1/m*

k

vE

mass for each band
mass changes throughout the band
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Effective Mass is not Essential … 

1 E

k
υ ∆=

∆ℏ

2

2 2

1 1 d E

m* dk
=
ℏ

k

1/m*

k

vE

0

0

t F
k k dt= + ∫

ℏ

??

k

Mass appears to be ill-defined

Integral description of the momentum and position change of wavepackets
Do not need effective mass
=> Effective mass is not a critical physical property!
=> Graphene is a material with such linear dispersion!

k
F

t

∆=
∆
ℏ

0

0

t

x x dtυ= + ∫
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Electron and Hole fluxes: Filled/Empty Bands

k

E

( )
3 0i

i filled

q
J

L
υ= − =∑

( )
2 i

i filled

q
J

L
υ= − ∑

Need 
• inversion symmetry

(number of states in +/-k identical)
• Pauli exclusion principle

-k

EF

0

0

max

min

k

i i
k

q q

L L
υ υ

−

= − − −∑ ∑

Empty bands carry no current

Full bands carry no current

0=
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k

E

3

2

1

Partially filled bands

Empty bands carry no current

Full bands carry no current

Let’s imagine there is a way to get 
some electrons from the valence band 
into the conduction band!

Partial filling can be achieved by:
• Optical excitation
• Thermal excitation
• Doping + a little thermal excitation
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k

E

( )
3 i

i filled

q
J

L
υ= − ∑

( )
i i

all i empty

q q

L L
υ υ= − +∑ ∑

-ve charge moving with –ve mass

+ve charge moving with +ve mass

3

2

1

0≠

( )
2 i

i filled

q
J

L
υ= − ∑

( )
i

i empty

q

L
υ= ∑

E

Electron and Hole Fluxes: Partially Filled Bands

Shockley example – top view of parking lot

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

2

2 2

1 1 d E

m* dk
=
ℏ

k

1/m*

k-k

E

Interpretation of the effective mass ? 

•m* not free mass

•m* function of k

•negative and positive 

(in the same band!)

But for Transport:

•Some bands are more 

important than others 

•Some are always full

•Some are always empty

Minimizing energy:

•Electrons “fall” to the 

bottom

•Holes “float” to the top

“Constant” Masses at:

•Bottom conduction band

•Top valence band
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2
..... 1,0,1,....

2 2

n N N
k n

NL

π= ± = − −

k

L

πL

π−
2

k
NL

π∆ =

E

4 states per atom, N atoms
=> 4 bands, N states in each band
All states are included in the first zone
Invariant to shift by 

Brillouin Zone and Number of States

[ ] ( ) ikLNx NL x eψ ψ+ =

E

1 2 3

N
-1

U(x)

max min
2

2
kStates L N

band k
NL

k π

π
−= = =

∆

2( ) ikLN i mx e e πψ=
( ) ikLN imkLx e eψ=

21 im imkLe eπ= =
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L

xReal

2

L

π 4

L

π2

L

π−4

L

π−

kK-lattice

L

π
L

π−

k

L

πL

π−
2

k
NL

π∆ =

E

Solution Space: Brillouin Zone

4 states per atom, N atoms
=> 4 bands, N states in each band
All states are included in the first zone
Invariant to shift by
Collapse of an infinite space into a 
discrete space 

21 im imkLe eπ= =
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Fourier Transform Reminders

finite <=> infinite

infinite <=> infinite

iaxe

Space Mapping

Periodic => discrete
1

( )cos ax
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A 1D periodic function: 

can be expanded in a Fourier series:

The Fourier components are defined on a discrete set of 
periodically arranged points (analogy: frequencies) in a 
reciprocal space to coordinate space.

3D Generalization:

( ) ( );   f x f x l l nL= + =

2 / 2
( ) i nx L igx

n g
n g

n
f x A e A e g

L
π π= = =∑ ∑

( ) ( )
a

;r, 321
G

G

⊥

++=∑= ⋅

G

bbbGkk rG lkhefu in
n

Where hkl are integers.  G=Reciprocal lattice vector

Reciprocal Space

Notes adopted from Dragica Vasileska, ASU

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

2 2 2x y z

b c c a a b
k k k

a b c a b c a b c
π π π× × ×= = =

× × ×i i i

1) Define reciprocal lattice with the following vectors ….

2) Use Wigner Seitz algorithm to find the unit cell 
in the wave-vector (reciprocal) space. 

Brillouin Zone –

Allowed States in a Reciprocal Lattice

( )31( ) ( )exp
2

f r d k f k ikr
π

= ∫
� � � �� Fourier transform:

Represented real-space
with plane waves

( )( )31( ) ( )exp
2

f r R d k f k ik r R
π

+ = +∫
� �� � � � � ��

Impose periodicity in R( ) ( )f r R f r+ =
� �� �

( )exp 1ik R =
���

2k R nπ=
���

x x zk G hk kk lk= = + +
� �� � � �

Reciprocal vector G
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Wigner-Seitz Method for Reciprocal Space 

Primitive cell in real space Unit-cell in reciprocal lattice

a

b ky

kx

ˆ ˆ
2 2

ˆ ˆx y

b z z a
k k

a b z a b z
π π× ×= =

× ×i i
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Brillouin Zone  for One-dimensional Solids

Real-space

1st B-Z

L

L

π
L

π−

E-k diagram

kx
2

L

π2

L

π−

L

π
L

π−
kx

0

Replacing

(a+b) by L …
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E-k diagram in 2D solids

Real-space

1st B-Z

E-k diagram

a

b

a

π
b

π
kx

0

a

π
a

π−

kx

b

π

b

π−

ky

ky

kxky

E
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Constant Energy-surface in 2D

1st B-Z

E-k diagram

Const. Energy
Surface

a

π
b

π
kx

0

kx

a

π

a

π−

kx

b

π

b

π−

ky

ky

kxky

E

ky

E1

k1

E1
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Conclusions

• Solution of Schrodinger equation is relatively easy for systems with well-
defined periodicity.

• Electrons can only sit in-specific energy bands. Effective masses and 
band gaps summarize information about possible electronic states.

• Effective mass is not a fundamental concept. There are systems for 
which effective mass can not be defined. 

• Kronig-Penney model is analytically solvable. Real band-structures are 
solved on computer. Such solutions are relatively easy – we will do HW 
problems on nanohub.org on this topic. 

• Effective mass is not a fundamental concept. There are systems for 
which effective mass can not be defined. 

• Of all the possible bands, only a few contribute to conduction. These are 
often called conduction and valence bands. 

• For 2D/3D systems, energy-bands are often difficult to visualize. E-k 
diagrams along specific direction and constant energy surfaces for 
specific bands summarize such information. 

• Most of the practical problems can only be analyzed by numerical 
solution. 


