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Time-independent Schrodinger Equation
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Time-independent Schrodinger Equation
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A Simple Differential Equation
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• Obtain U(x) and the boundary conditions for a given problem.

• Solve the 2nd order equation – pretty basic

• Interpret as the probability of finding an electron at x

• Compute anything else you need, e.g., 
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Additional notes
»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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Periodic
Structure

E

Case 1:

Free electron

E >> U

Case 2:
Electron in infinite well
E  << U

Case 3:

Electron in finite well 

E < U

Full Problem Difficult: Toy Problems First
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Free Particle …
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Periodic
Structure

E

Case 1:

Free electron

E >> U

Case 2:
Electron in infinite well
E  << U

Case 3:

Electron in finite well 

E < U

Full Problem Difficult: Toy Problems First
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Case 2: Bound State Problems

• Mathematical interpretation of Quantum Mechanics(QM)

» Only a few number of problems have exact mathematical solutions
» They involve specialized functions
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Coulomb Potential

by nucleus in an atom 
Particle in a box Harmonic Oscillator Triangular Potential Well
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1-D Particle in a Box – A Solution Guess

• (Step 1) Formulate time independent Schrödinger equation

  

− ℏ
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dx2 ψ x( )+ V x( )ψ x( )= Eψ x( ) V x( )=
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 

     where,

• (Step 2) Use your intuition that the particle will 
never exist outside the energy barriers to guess,

ψ x( )=
0 0≤ x ≤ Lx

≠ 0 in the well

 
 
 

     

• (Step 3) Think of a solution in the well as:
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1-D Particle in a Box – Visualization

• (Step 4) Plot first few solutions
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• (Step 5) Plot corresponding electron densities

The distribution of SINGLE particle

x = Lxx = 0

n = 2

x = Lxx = 0

n = 3

x = Lxx = 0

n = 4

ONE particle => density is normalized to ONE

Matches the condition we guessed at step 2!
But what do the NEGATIVE numbers mean?

x = Lxx = 0

n =1

“s-type” “p-type” “d-type” “f-type”

ψ x( )=
0 0≤ x ≤ Lx

≠ 0 in the well

 
 
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1-D Particle in a Box – Normalization to ONE particle

(Step 6) Normalization (determine the constant A)
Method 1) Use symmetry property of sinusoidal function
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1-D Particle in a Box – The Solution

(Step 7) Plug the wave function back into the Schrödinger equation
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n =1,2,3,…,   0< x < Lx

Discrete Energy Levels!
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1-D Particle in a Box – Quantum vs. Macroscopic

• Quantum world → Macroscopic world
» What will happen with the discretized energy levels if we increase the length of the box?

• Energy level spacing goes smaller and smaller as physical dimension 
increases.

• In macroscopic world, where the energy spacing is too small to resolve, 
we see continuum of energy values. 

• Therefore, the quantum phenomena is only observed in nanoscale 
environment.

  

 En = ℏ
2π 2

2mLx
2 n2

Lx = 5nm Lx = 50nm Lx = 50cm
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Additional notes
»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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Periodic
Structure

E

Case 1:

Free electron

E >> U

Case 2:
Electron in infinite well
E  << U

Case 3:

Electron in finite well 

E < U

Full Problem Difficult: Toy Problems First
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1) 

Solution Ansatz

2N unknowns 

for N regions

2) Boundary Conditions at the edge

Reduces 2 unknowns

3) Boundary Condition at each interface:

Set 2N-2  equations for 

2N-2 unknowns (for continuous U)

Det (coefficient matrix)=0
And find E by graphical 
or numerical solution

4) 2
( , ) 1x E dxψ

∞

−∞
=∫5)

Normalization of unity probability

for wave function

( ) x xx De Eeα αψ − += +
( ) ikx ikxx A e A eψ −
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Five Steps for Closed System Analytical Solution
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2) Boundary 

conditions

at the edge

0 a

sin cosA kx B kxψ = +

x xMe Ceα αψ − ++=
x xDe Neα αψ − ++=

1)

E

Case 2: Bound-levels in Finite Well (steps 1,2)
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3) Boundary at each interface

Case 2: Bound-levels in Finite Well (steps3)
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det (Matrix)=0

0
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U

E mξ α≡ ≡
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Only unknown is E

(i) Use Matlab function 
(ii) Use graphical method

Case 2: Bound-levels in Finite Well (step 4)
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Case 2: Bound-levels in Finite Well 
(steps 4 graphical)
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ζ=
E
/U

0 a

E1

0

2 (1 )

2
a ( )

1
t n a

ξ ξ
ξ

α ξ −
=

−

ζ=E/U

E1

Obtained the eigenvalues
=> could stop here in many cases

Case 2: Bound-levels in Finite Well 
(steps 4 graphical)
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=> Linear dependent system
=> Only 3 variables are unique
=> One variable is undetermined
Let’s assume A can be freely 
Chosen => can get B,C,D 

Need another boundary condition! 

Case 2: Bound-levels in Finite Well 
(steps 5 wavefunction)
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=> Linear dependent system
=> Only 3 variables are unique
=> One variable is undetermined
Let’s assume A can be freely 
Chosen => can get B,C,D 

Non-linear => no simple linear algebra expression
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Another boundary condition! 

Step 5: Wave-functions

Get “A”

Get 
“B,C,D”
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xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

Key Summary of a Finite Quantum Well

• Problem is analytically solvable 
• Electron energy is quantized and wavefunction is lo calized
• In the classical world:

» Particles are not allowed inside the barriers / wal ls => C=D=0

• In the quantum world:
» C and D have a non-zero value!
» Electrons can tunnel inside a barrier

SiO2 SiSi
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Additional notes
»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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Transmission through a single barrier
Scattering Matrix approach

Incident : A

Reflected : B Incident : F

Transmitted : E

Define our system : Single barrier

One matrix each for each interface: 2 S-matrices

No particles lost! Typically A=1 and F=0.

D

C
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Tunneling through a single barrier

Wave-function each region,

Incident : A
Reflected : B Incident : F

Transmitted : E
D

C
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Single barrier case

Applying boundary conditions at each interface (x=0 and x=L) gives,

Which in matrix can be written as,
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Generalization to Transfer Matrix Method                          

• The complete transfer matrix

• In general for any intermediate set of layers, the TMM is expressed as:

• For multiple layers the overall transfer matrix will be

• Looks conceptually very simple and analytically pleasing
• Use it for your homework assignment for a double barrier structure!  

An−1
+

An−1
−















=
M11 M12

M21 M22















An
+

An
−















A
B F

ED
C
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Single barrier case

Transmission can be found using the relations between unknown constants,

Case: E<Vo

Case(γL<<1): Weak barrier

Case(γL large): Strong barrier

Case: E>Vo
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Single barrier : Concepts

•Transmission is finite under the barrier – tunneling!
•Transmission above the barrier is not perfect unity!
•Quasi-bound state above the barrier. 
Transmission goes to one.

•Computed with – http://nanohub.org/tools/pcpbt

Case: E>Vo
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Effect of barrier thickness  below the barrier

•Increased barrier width reduces tunneling probability
•Thicker barrier increase the reflection probability below the 
barrier height.

•Quasi-bound states occur for the 
thicker barrier too.

•Computed with – http://nanohub.org/tools/pcpbt

Case: E>Vo
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Single Barrier – Key Summary

• Quantum wavefunctions can tunnel through barriers
• Tunneling is reduced with increasing barrier height and 

width

• Transmission above the barrier is not unity
»2 interfaces cause constructive and destructive 

interference 
»Quasi bound states are formed that result in unity 

transmission
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Additional notes
»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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Double Barrier Transmission:
Scattering Matrix approach

Left Incident

Reflected Right Incident

Transmitted

Define our system : Double barrier

One matrix each for each interface: 4 S-matrices

No particles lost! 
Typically Left Incident wave is normalized to one.
Right incident is assumed to be zero.

Also this problem is analytically solvable! => Homework assignment
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Reminder: Single barrier

•Transmission is finite under the barrier – tunneling!
•Transmission above the barrier is not perfect unity!
•Quasi-bound state above the barrier. 
Transmission goes to one.
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Double barrier: Concepts
• Double barriers allow a transmission probability of one / unity for discrete energies
• (reflection probability of zero) for some energies below the barrier height.
• This is in sharp contrast to the single barrier case 
• Cannot be predicted by classical physics.
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Double barrier: Quasi-bound states

• In addition to states inside the well, there could be states above the barrier height.
• States above the barrier height are quasi-bound or weakly bound.
• How strongly bound a state is can be seen by the width of the transmission peak.
• The transmission peak of the quasi-bound state is much broader than the peak for 
the state inside the well.
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Effect of barrier height

•Increasing the barrier height makes the resonance sharper.
•By increasing the barrier height, the confinement in the well is 
made stronger, increasing the lifetime of the resonance. 

•A longer lifetime corresponds to a sharper resonance.
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Effect of barrier thickness

•Increasing the barrier thickness makes the resonance 
sharper.

•By increasing the barrier thickness, the confinement in the 
well is made stronger, increasing the lifetime of the 
resonance. 

•A longer lifetime corresponds to a sharper resonance.
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Double barrier energy levels Vs Closed system

The well region in the double barrier case can be 
thought of as a particle in a box.



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Particle in a box

• The time independent Schrödinger equation is

  

− ℏ
2

2m

d2

dx2 ψ x( )+ V x( )ψ x( )= Eψ x( ) V x( )=
0 0< x < Lx

∞ elsewhere

 
 
 

     where,

• The solution in the well is:

  

ψn x( )= Asin
nπ
Lx

x
 

 
 

 

 
  , n =1,2,3,…

  

ψn x( )= 2
Lx

sin
nπ
Lx

x
 

 
 

 

 
 

       En = h2π 2

2mLx
2 n2

n =1,2,3,K ,   0< x < Lx

• Plugging the normalized wave-functions back into 
the Schrödinger equation we find that energy 
levels are quantized.

n = 2

n = 3

n = 4

n =  1

V = ∞ V = ∞

V = 0
x = Lxx = 0
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Double barrier & particle in a box

• Double barrier: Thick Barriers(10nm), Tall Barriers(1eV), Well(20nm).
• First few resonance energies match well with the particle in a box 

energies.
• The well region resembles the particle in a box setup.

• Green: Particle in 
a box energies.

• Red: Double 
barrier energies
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Open systems Vs closed systems

• Green: Particle in 
a box energies.

• Red: Double 
barrier energies

• Double barrier: Thinner Barriers(8nm), Shorter Barriers(0.25eV), Well(10nm).
• Even the first resonance energy does not match with the particle in a box energy.
• The well region does not resemble a particle in a box. 
• A double barrier structure is an OPEN system, particle in a box is a CLOSED 

system.
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Reason for deviation?

• Wave-function 
penetrates into the 
barrier region.

• The effective length 
of the well region is 
modified.

• The effective length 
of the well is crucial 
in determining the 
energy levels in the 
closed system.

Potential profile 
and resonance 
energies using 
tight-binding.

First excited state 
wave-function 
amplitude using 
tight binding.

Ground state 
wave-function 
amplitude using 
tight binding.

  

       En = h2π 2

2mLwell
2 n2

n =1,2,3,K ,   0< x < Lwell
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Double Barrier Structures - Key Summary

• Double barrier structures can show unity transmission for 
energies BELOW the barrier height
»Resonant Tunneling

• Resonance can be associated with a quasi bound state
»Can relate the bound state to a particle in a box

»State has a finite lifetime / resonance width

• Increasing barrier heights and widths:
»Increases resonance lifetime / electron residence time

»Sharpens the resonance width
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Additional notes
»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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1 Well => 1 Transmission Peak 

• Vb=110meV, W=6nm, B=2nm
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2 Wells => 2 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm          Bonding/Anti-bonding State
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3 Wells => 3 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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4 Wells => 4 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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5 Wells => 5 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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6 Wells => 6 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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7 Wells => 7 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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8 Wells => 8 Transmission Peaks 

• Vb=110meV, W=6nm, B=2nm
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9 Wells => 9 Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric
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19 Wells => 19 Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric
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29 Wells => 29 Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric
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39 Wells => 39 Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric
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49 Wells => 49 Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric
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N Wells => N Transmission Peaks 

• Bandpass filter formed
• Band transmission not symmetric

• Bandpass sharpens with
increasing number of wells
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1 Well => 1 Transmission Peak => 1 State 

• Bandpass filter formed
• Band transmission not symmetric

• Bandpass sharpens with
increasing number of wells
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2 Wells => 2 Transmission Peaks => 2 States

• Bandpass filter formed
• Band transmission not symmetric
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3 Wells => 3 Transmission Peaks => 3 States 

• Bandpass filter formed
• Band transmission not symmetric
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4 Wells => 4 Transmission Peaks => 4 States 

• Bandpass filter formed
• Band transmission not symmetric
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5 Wells => 5 Transmission Peaks => 5 States 

• Bandpass filter formed
• Band transmission not symmetric
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6 Wells => 6 Transmission Peaks => 6 States 

• Bandpass filter formed
• Band transmission not symmetric
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7 Wells => 7 Transmission Peaks => 7 States 

• Bandpass filter formed
• Band transmission not symmetric
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8 Wells => 8 Transmission Peaks => 8 States 

• Bandpass filter formed
• Band transmission not symmetric
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9 Wells => 9 Transmission Peaks => 9 States 

• Bandpass filter formed
• Band transmission not symmetric
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19 Wells => 19 Transmission Peaks => 19 States

• Bandpass filter formed
• Band transmission not symmetric
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29 Wells => 29 Transmission Peaks => 29 States 

• Bandpass filter formed
• Band transmission not symmetric
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39 Wells => 39 Transmission Peaks => 39 States 

• Bandpass filter formed
• Band transmission not symmetric
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49 Wells => 49 Transmission Peaks => 49 States 

• Bandpass filter formed
• Band transmission not symmetric

• Cosine-like band formed
• Band is not symmetric
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N Wells => N Transmission Peaks => N States 

• Bandpass filter formed
• Band transmission not symmetric

• Cosine-like band formed
• Band is not symmetric
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N Wells => N States => 1 Band 

• Vb=110meV, W=6nm, B=2nm   => ground state in each well
=> what if there were excited states in each well => Vb=400meV
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N Wells => 2N States => 2 Bands

Vb=110meV, W=6nm, B=2nm

Vb=400meV, W=6nm, B=2nm
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N Wells => 2N States => 2 Bands

Vb=110meV, W=6nm, B=2nm

Vb=400meV, W=6nm, B=2nm

1 state/well => 1band

2 states/well => 2bands

Can we get more states/well?

=> Increase well width
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X States/Well 
=> X Bands

Vb=110meV,
W=6nm, B=2nm

Vb=400meV
W=6nm, B=2nm

1 state/well
=> 1 band

2 states/well 
=> 2 bands

3 states/well 
=> 3 bands

Vb=400meV
W=10nm, B=2nm
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X States/Well 
=> X Bands

Vb=110meV,
W=6nm, B=2nm

Vb=400meV
W=6nm, B=2nm

1 state/well
=> 1 band

2 states/well 
=> 2 bands

3 states/well 
=> 3 bands

Vb=400meV
W=10nm, B=2nm
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Formation of energy bands

•Each quasi-bond state will give rise to a resonance in a well. (No. of 
barriers -1)

•Degeneracy is lifted because of interaction between these states.
•Cosine-like bands are formed as the number of wells/barriers is 
increased

•Each state per well forms a band
•Lower bands have smaller slope = > heavier mass
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Procedure Summary
• Additional notes

»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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( ) 0

( ) 0

x

x

ψ
ψ

= −∞ =
= +∞ =

d 2ψ
dx2

+ k 2ψ = 0

B B

B B

x x x x

x x x x

d d

dx dx

ψ ψ

ψ ψ

− +

− +

= =

= =

=

=

1) 

Solution Ansatz

2N unknowns 

for N regions

2) Boundary Conditions at the edge

Reduces 2 unknowns

3) Boundary Condition at each interface:

Set 2N-2  equations for 

2N-2 unknowns (for continuous U)

Det (coefficient matrix)=0
And find E by graphical 
or numerical solution

4) 2
( , ) 1x E dxψ

∞

−∞
=∫5)

Normalization of unity probability

for wave function

( ) x xx De Eeα αψ − += +
( ) ikx ikxx A e A eψ −

+ −= +

Five Steps for Closed System Analytical Solution
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Open System: Generalization to Transfer Matrix Method                          

• The complete transfer matrix

• In general for any intermediate set of layers, the TMM is expressed as:

• For multiple layers the overall transfer matrix will be

• Looks conceptually very simple and analytically pleasing
• Use it for your homework assignment for a double barrier structure!  

An−1
+

An−1
−















=
M11 M12

M21 M22















An
+

An
−















A
B F

ED
C
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Presentation Outline

• Time Independent Schroedinger Equation
• Analytical solutions of Toy Problems

»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well
»Electrons in a finite potential well
»Tunneling through a single barrier

• Numerical Solutions to Toy Problems
»Tunneling through a double barrier structure
»Tunneling through N barriers

• Procedure Summary
• Additional notes

»Discretizing Schroedinger’s equation for numerical implementations

Reference: Vol. 6, Ch. 2 (pages 29-45) 
• piece-wise-constant-potential-barrier tool 

http://nanohub.org/tools/pcpbt
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d 2ψ
dx2

+ k2ψ = 0

x

U0(x)

k > 0
α = ik

[ ]02k m E U( x ) /≡ − ℏ

α = ik

Numerical solution of Schrodinger Equation
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U(x)

x
0 1        2         3   N+1 N

a

2 2

2
0

(
2

)
d

E
m dx

U x
ψ ψ ψ− + =ℏ

U1

ψ3

(1) Define a grid …
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( ) ( )
0 0

2 2

00 22x a x a

d a d
a ...

dx d
x

x
x aψ ψψ ψ

= =

= + + ++

( ) ( )
0 0

2 2

00 22x a x a

d a d
a ...

dx d
x

x
x aψ ψψ ψ

= =

= − + −−

( ) ( ) ( )
0

2
2

20 00 2
x a

x
d

ax a a
dx

xψψ ψψ
=

+ −+ − =

d 2ψ
dx2

i

= ψ i−1 − 2ψ i +ψ i+1

a2

Second Derivative on a Finite Mesh
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(2) Express equation in Finite Difference Form

( )
2

2
0 2

( )U
d

t xa E
dx

ψ ψ ψ− + =

0 x1         2 N+1 

d 2ψ
dx2

i

= ψ i−1 − 2ψ i +ψ i+1

a2

( )0 1 0 0 12i ii i iEUt t tψ ψ ψ ψ− + − + + − = 

2

0 2
02

t
m a

≡ ℏ

ψ(0) = 0 ψ(L) = 0N unknowns

i-1     i i+1
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(3) Define the matrix …

−t0ψ i−1 + 2t0 + ECi( )ψ i − t0ψ i+1[ ]= Eψ i

Hψψψψ = Eψψψψ

N x N N x 1

(i = 2, 3…N-1)

−t0 (2t0 + EC1) −t0

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

−t0 (2t0 +ECi) −t0 = E

( )0 0 0 1 0 22 Ci it t E t Eψ ψ ψ ψ− + + − =   (i = 1)

( )0 1 0 0 12N Ci N N it t E t Eψ ψ ψ ψ− +− + + − =   (i = N)
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(4) Solve the Eigen-value Problem

U(x)

1 x32 4 N (N-1)

a

Hψψψψ = Eψψψψ

ε1

ε2

ε3

ε4Eigenvalue
problem; 
easily solved 
with MATLAB
& nanohub
tools

wrong


