ECE606: Solid State Devices Lecture 3

Gerhard Klimeck
gekco@purdue.edu

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi}{d x^{2}}+U(x) \Psi=i \hbar \frac{d \Psi}{d t} \quad \Psi(x, t)=\psi(x) e^{-i E t / \hbar} \\
-e^{-\frac{i E t}{\hbar}} \frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi(x)}{d x^{2}}+e^{-\frac{i E t}{\hbar}} U(x) \psi(x)=i \hbar \frac{-i E}{\hbar} \psi(x) e^{-\frac{i E t}{\hbar}} \\
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi \\
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m_{0}}{\hbar^{2}}(E-U) \psi=0
\end{gathered}
$$

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m_{0}}{\hbar^{2}}(E-U) \psi=0
$$

If $E>U$, then

$$
\begin{array}{rlrl}
k \equiv \frac{\sqrt{2 m_{0}[E-U]}}{\hbar} \quad \frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 & \psi(x) & =A \sin (k x)+B \cos (k x) \\
& \equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
\end{array}
$$

If U>E, then

$$
\alpha \equiv \frac{\sqrt{2 m_{0}[U-E]}}{\hbar} \quad \frac{d^{2} \psi}{d x^{2}}-\alpha^{2} \psi=0 \quad \psi(x)=D e^{-\alpha x}+E e^{+\alpha x}
$$

$$
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi
$$

- Obtain $U(x)$ and the boundary conditions for a given problem.
- Solve the $2^{\text {nd }}$ order equation - pretty basic
- Interpret $|\psi|^{2}=\psi^{*} \psi \quad$ as the probability of finding an electron at x
- Compute anything else you need, e.g.,

$$
p=\int_{0}^{\infty} \Psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \Psi d x \quad E=\int_{0}^{\infty} \Psi^{*}\left[-\frac{\hbar}{i} \frac{d}{d t}\right] \Psi d x
$$

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
"(Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
" Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure
"Tunneling through N barriers
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \quad k \equiv \frac{\sqrt{2 m_{0}[E-U]}}{\hbar}
$$

1) Solution $\psi(x)=A \sin (k x)+B \cos (k x)$

$$
\equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
$$

2) Boundary condition $\quad \psi(x)=A_{+} e^{i k x} \quad$ positive going wave $=A_{-} e^{-i k x}$ negative going wave

$$
\begin{aligned}
\psi(x) & =A \sin (k x)+B \cos (k x) \\
& \equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
\end{aligned}
$$

$\psi(x)=A_{+} e^{i k x} \quad$ positive going wave

$$
=A_{-} e^{-i k x} \quad \text { negative going wave }
$$

Probability:

$$
|\psi|^{2}=\psi \psi^{*}=\left|A_{+}\right|^{2} \text { or }\left|A_{-}\right|^{2}
$$

Momentum: $\quad p=\int_{0}^{\infty} \Psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \Psi d x=\hbar k$ or $-\hbar k$

Case 2: Bound State Problems

- Mathematical interpretation of Quantum Mechanics(QM)

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial}{\partial t} \Psi
$$

» Only a few number of problems have exact mathematical solutions
" They involve specialized functions

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- (Step 1) Formulate time independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \text { where, } V(x)=\left\{\begin{array}{cc}
0 & 0<x<L_{x} \\
\infty & \text { elsewhere }
\end{array}\right.
$$

- (Step 2) Use your intuition that the particle will never exist outside the energy barriers to guess,

$$
\psi(x)=\left\{\begin{array}{cl}
0 & 0 \leq x \leq L_{x} \\
\neq 0 & \text { in the well }
\end{array}\right.
$$

- (Step 3) Think of a solution in the well as:

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi}{L_{x}} x\right), n=1,2,3, \ldots
$$

\%o

(Step 6) Normalization (determine the constant A)
Method 1) Use symmetry property of sinusoidal function

$$
\left|\psi_{n}(x)\right|^{2}=A^{2} \sin ^{2}\left(\frac{n \pi}{L_{x}} x\right)
$$

$$
\begin{aligned}
& \text { (Area) }=1=\frac{L_{x}}{2} \times A^{2} \\
& \therefore A=\sqrt{\frac{2}{L_{x}}}
\end{aligned}
$$

Method 2) Integrate $\mid \psi_{n}(x)^{2}$ over $0 \sim L_{x}$

$$
\begin{gathered}
1=\int_{0}^{L_{x}}\left|\psi_{n}(x)\right|^{2} d x=\int_{0}^{L_{x}} A^{2} \sin ^{2}\left(\frac{n \pi}{L_{x}} x\right) d x=A^{2} \int_{0}^{L_{x}} \frac{1-\cos \left(\frac{2 n \pi x}{L_{x}}\right)}{2} d x=A^{2} \frac{L_{x}}{2} \\
\therefore \psi_{n}(x)=\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right), \begin{array}{c}
n=1,2,3, \ldots \\
0<x<L_{x}
\end{array}
\end{gathered}
$$

(Step 7) Plug the wave function back into the Schrödinger equation

$$
\begin{aligned}
& \psi_{n}(x)=\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right) \longrightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \\
& \frac{\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{L_{x}{ }^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\psi_{n}(x) & =\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right) \\
E_{n} & =\frac{\hbar^{2} \pi^{2}}{2 m L_{x}^{2}} n^{2} \\
n & =1,2,3, \ldots, \quad 0<x<L_{x}
\end{aligned}
$$

Discrete Energy Levels!

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

\%

- Quantum world \rightarrow Macroscopic world
" What will happen with the discretized energy levels if we increase the length of the box?

- Energy level spacing goes smaller and smaller as physical dimension increases.
- In macroscopic world, where the energy spacing is too small to resolve, we see continuum of energy values.
- Therefore, the quantum phenomena is only observed in nanoscale environment.

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
" (Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
"Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure
"Tunneling through N barriers
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

> 1) $\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \longrightarrow \begin{aligned} & \text { Solution Ansatz } \\ & 2 \mathrm{~N} \text { unknowns } \\ & \text { for N regions }\end{aligned} \quad \begin{aligned} & \psi(x)=A_{+} e^{i k x}+A_{-} e^{-i k x} \\ & \psi(x)=D e^{-\alpha x}+E e^{+\alpha x}\end{aligned}$
> 2) $\begin{aligned} & \psi(x=-\infty)=0 \\ & \psi(x=+\infty)=0\end{aligned} \longrightarrow \begin{aligned} & \text { Boundary Conditions at the edge } \\ & \text { Reduces } 2 \text { unknowns }\end{aligned}$
> 3) $\left.\psi\right|_{x=x_{B}^{-}}=\left.\psi\right|_{x=x_{B}^{+}} \quad$ Boundary Condition at each interface:
> $\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{-}}=\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{+}} \longrightarrow \begin{aligned} & \text { Set } 2 \mathrm{~N}-2 \text { equations for } \\ & 2 \mathrm{~N}-2 \text { unknowns (for continuous U) }\end{aligned}$
> 4) Det (coefficient matrix) $=0$ And find E by graphical or numerical solution
> 5) $\int_{-\infty}^{\infty}|\psi(x, E)|^{2} d x=1$
> Normalization of unity probability for wave function

2) Boundary conditions at the edge
$\psi(x=-\infty)=0$
$\psi(x=+\infty)=0$

Case 2: Bound-levels in Finite Well (step 4)
nonerluerg

Only unknown is E

$$
\tan (\alpha a \sqrt{\xi})=\frac{2 \sqrt{\xi(1-\xi)}}{2 \xi-1}
$$

(i) Use Matlab function
(ii) Use graphical method

$$
\xi \equiv \frac{E}{U_{0}} \quad \alpha \equiv \sqrt{\frac{2 m U_{0}}{\hbar^{2}}}
$$

$$
\operatorname{det}(\text { Matrix })=0
$$

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Case 2: Bound-levels in Finite Well (steps 4 graphical)

$$
\begin{gathered}
x^{2}=x+5 \\
y_{1}=x^{2} \quad y_{2}=x+5
\end{gathered}
$$

$$
\tan \left(\alpha_{0} a \sqrt{\xi}\right)=\frac{2 \sqrt{\xi(1-\xi)}}{2 \xi-1}
$$

Key Summary of a Finite Quantum Well

- Problem is analytically solvable
- Electron energy is quantized and wavefunction is localized
- In the classical world:
" Particles are not allowed inside the barriers / walls => C=D=0
- In the quantum world:

$\psi=A \sin k x+B \cos k x$

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
" (Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
"Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure
"Tunneling through N barriers
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

Define our system : Single barrier

One matrix each for each interface: 2 S -matrices

No particles lost! Typically $\mathrm{A}=1$ and $\mathrm{F}=0$.

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Wave-function each region,

$$
\begin{aligned}
& \psi_{1}(x)=A e^{i k x+B e^{-i k x}} \\
& \psi_{2}(x)=C e^{-\gamma_{x}+D e^{\gamma x}} \\
& \psi_{3}(x)=E e^{i k x+F e^{-i k x}}
\end{aligned}
$$

Applying boundary conditions at each interface ($x=0$ and $x=L$) gives,

$$
\begin{aligned}
& \psi_{1}(0)=\psi_{2}(0) \rightarrow A+B=C+D \\
& \psi_{1}^{\prime}(0)=\psi_{2}^{\prime}(0) \rightarrow i k(A-B)=-\gamma(C-D) \\
& \psi_{2}^{\prime}(L)=\psi_{3}(L) \rightarrow C e^{-\gamma L}+D e^{\gamma L}=E e^{i k L}+F e^{-i k L} \\
& \psi_{2}^{\prime}(L)=\psi_{3}^{\prime}(L) \rightarrow-\gamma\left(C e^{-\gamma L}-D e^{\gamma L}\right)=i k\left(E e^{i k L}-F e^{-i k L}\right.
\end{aligned}
$$

Which in matrix can be written as,

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2}\left(1+i \frac{\gamma}{k}\right) & \frac{1}{2}\left(1-i \frac{\gamma}{k}\right) \\
\frac{1}{2}\left(1-i \frac{\gamma}{k}\right) & \frac{1}{2}\left(1+i \frac{\gamma}{k}\right)
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=M_{1}\left[\begin{array}{l}
C \\
D
\end{array}\right]} \\
& {\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2}\left(1-i \frac{k}{\gamma}\right) e^{(i k+\gamma) L} & \frac{1}{2}\left(1+i \frac{k}{\gamma}\right) e^{-(i k-\gamma) L} \\
\frac{1}{2}\left(1+i \frac{k}{\gamma}\right) e^{(i k-\gamma) L} & \frac{1}{2}\left(1-i \frac{k}{\gamma}\right) e^{-(i k+\gamma) L}
\end{array}\right]\left[\begin{array}{l}
E \\
F
\end{array}\right]=M_{2}\left[\begin{array}{l}
E \\
F
\end{array}\right]}
\end{aligned}
$$

Generalization to Transfer Matrix Method

- The complete transfer matrix
- In general for any intermediate set of layers, the IMM is expressed as:

$$
\binom{A_{n-1}^{+}}{A_{n-1}^{-}}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{A_{n}^{+}}{A_{n}^{-}}
$$

- For multiple layers the overall transfer matrix will be
$\binom{A_{\mathrm{N}}}{B_{\mathrm{N}}}=\prod_{j=2 . \mathrm{N}} \underline{T}_{j}\binom{A_{1}}{B_{1}}$.
- Looks conceptually very simple and analytically pleasing
- Use it for your homework assignment for a double barrier structure!

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Transmission can be found using the relations between unknown constants,

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]=M_{1}\left[\begin{array}{l}
C \\
D
\end{array}\right]=M_{1} M_{2}\left[\begin{array}{l}
E \\
F
\end{array}\right]=M\left[\begin{array}{l}
E \\
F
\end{array}\right] \quad T(E)=\left|\frac{E}{A}\right|^{2}=\frac{1}{\left|m_{11}\right|^{2}}
$$

$$
\begin{aligned}
& T(E)=\left[1+\left(\frac{\gamma^{2}+k^{2}}{2 k \gamma}\right)^{2}{\left.s h^{2}(\gamma L)\right]^{-1}}^{T} \begin{array}{rl}
& T(E) \approx\left(\frac{4 k \gamma}{k^{2}+\gamma^{2}}\right)^{2} \exp (-2 \gamma L) \\
\text { Case }(\gamma L \ll 1): \text { Weak barrier } & \text { Case: E>V } V_{0} \\
T(E) \approx \frac{1}{1+(k L / 2)^{2}} & T(E)=\left[1+\left(\frac{k^{2}-k_{2}^{2}}{2 k k_{2}}\right)^{2} \sin ^{2}\left(k_{2} L\right)\right]^{-1}
\end{array}\right.
\end{aligned}
$$

Single barrier : Concepts

-Transmission is finite under the barrier - tunneling!
-Transmission above the barrier is not perfect unity!
-Quasi-bound state above the barrier. Case: $\mathrm{E}>\mathrm{V}_{0}$
Transmission goes to one.

$$
T(E)=\left[1+\left(\frac{k^{2}-k_{2}^{2}}{2 k k_{2}}\right)^{2} \sin ^{2}\left(k_{2} L\right)\right]^{-1}
$$

-Computed with - http://nanohub.org/toois/pcpot

- Quantum wavefunctions can tunnel through barriers
-Tunneling is reduced with increasing barrier height and width
- Transmission above the barrier is not unity "2 interfaces cause constructive and destructive interference
"Quasi bound states are formed that result in unity transmission

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
"(Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
"Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure "Tunneling through N barriers
- Additional notes
" Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

Double Barrier Transmission: Scattering Matrix approach
Define our system : Double barrier

One matrix each for each interface: 4 S-matrices

No particles lost!
Typically Left Incident wave is normalized to one.
Right incident is assumed to be zero.
Also this problem is analytically solvable! => Homework assignment
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam
-Transmission is finite under the barrier - tunneling!
-Transmission above the barrier is not perfect unity!
-Quasi-bound state above the barrier.
Transmission goes to one.

- Double barriers allow a transmission probability of one / unity for discrete energies
- (reflection probability of zero) for some energies below the barrier height.
- This is in sharp contrast to the single barrier case
- Cannot be predicted by classical physics.

- In addition to states inside the well, there could be states above the barrier height.
- States above the barrier height are quasi-bound or weakly bound.
- How strongly bound a state is can be seen by the width of the transmission peak.
- The transmission peak of the quasi-bound state is much broader than the peak for the state inside the well.

- Increasing the barrier height makes the resonance sharper. - By increasing the barrier height, the confinement in the well is made stronger, increasing the lifetime of the resonance.
- A longer lifetime corresponds to a sharper resonance.

- Increasing the barrier thickness makes the resonance sharper.
-By increasing the barrier thickness, the confinement in the well is made stronger, increasing the lifetime of the resonance.
- A longer lifetime corresponds to a sharper resonance.

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

The well region in the double barrier case can be thought of as a particle in a box.

- The time independent Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \text { where, } V(x)= \begin{cases}0 & 0<x<L_{x} \\ \infty & \text { elsewhere }\end{cases}
$$

- The solution in the well is:

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi}{L_{x}} x\right), n=1,2,3, \ldots
$$

- Plugging the normalized wave-functions back into the Schrödinger equation we find that energy levels are quantized.

$$
\begin{aligned}
\psi_{n}(x) & =\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right) \\
E_{n} & =\frac{\mathrm{h}^{2} \pi^{2}}{2 m L_{x}^{2}} n^{2}
\end{aligned}
$$

Double barrier \& particle in a box

- Green: Particle in a box energies.
- Red: Double barrier energies
- Double barrier: Thick Barriers(10nm), Tall Barriers(1eV), Well(20nm).
- First few resonance energies match well with the particle in a box energies.
- The well region resembles the particle in a box setup.

- Double barrier: Thinner Barriers(8nm), Shorter Barriers(0.25eV), Well(10nm).
- Even the first resonance energy does not match with the particle in a box energy.
- The well region does not resemble a particle in a box.
- A double barrier structure is an OPEN system, particle in a box is a CLOSED system.

-8 ncon

Potential profile and resonance energies using tight-binding.

First excited state wave-function amplitude using tight binding.

Ground state wave-function amplitude using tight binding.
PURDUE Klimeck - ECE606 Fi

- Wave-function penetrates into the barrier region.
- The effective length of the well region is modified.
- The effective length of the well is crucial in determining the energy levels in the closed system.

$$
\begin{aligned}
E_{n} & =\frac{\mathrm{h}^{2} \pi^{2}}{2 m L_{\text {well }}^{2}} n^{2} \\
n & =1,2,3, \mathrm{~K}, \quad 0<x<L_{\text {well }}
\end{aligned}
$$

- Double barrier structures can show unity transmission for energies BELOW the barrier height
"Resonant Tunneling
- Resonance can be associated with a quasi bound state
"Can relate the bound state to a particle in a box
"State has a finite lifetime / resonance width
- Increasing barrier heights and widths:
" Increases resonance lifetime / electron residence time "Sharpens the resonance width Presentation Outline
- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
"(Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
"Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure
"Tunneling through N barriers
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

> | • Bandpass filter formed | - Bandpass sharpens with |
| :---: | :---: |
| •Band transmission not symmetric | |
| PURDUE Kimeck- ECE606 Fall 2012 -notes atopted from Alam | | increasing number of wells

[^0]

- Bandpass filter formed
- Band transmission not symmetric

PURDUE Kimeck-ECE606 Fall 2012 - notes atopted from Alam

\%คㅇㅇ 4 Wells => 4 Transmission Peaks => 4 States

[^1]

- Bandpass filter formed
- Band transmission not symmetric

PURDUE Kimeck-ECE606 Fall 2012 - notes atooted from Alam

- Bandpass filter formed
- Band transmission not symmetric

PURDUE Klimeck- CCE606 Fall 2012 - notes abopted from Alam

\%\% ก.

[^2]

- Bandpass filter formed
- Band transmission not symmetric

PURDUE Kimeck-ECE606 Fall 2012 - notes atopted from Alam

\%\% ก. 19 Wells => 19 Transmission Peaks => 19 States noncruberg

[^3]

> - Bandpass filter formed
> - Cosine-like band formed
> - Band transmission not symmetric • Band is not symmetric

Formation of energy bands

- Each quasi-bond state will give rise to a resonance in a well. (No. of barriers -1)
- Degeneracy is lifted because of interaction between these states.
- Cosine-like bands are formed as the number of wells/barriers is increased
- Each state per well forms a band
- Lower bands have smaller slope $=>$ heavier mass

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
" (Almost) Free Electrons
" Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
"Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure "Tunneling through N barriers
- Procedure Summary
- Additional notes
»Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

Oోo \cap CRFive Steps for Closed System Analytical Solution

1) $\begin{aligned} & d^{2} \psi \\ & d x^{2}\end{aligned}+k^{2} \psi=0 \longrightarrow \begin{aligned} & \text { Solution Ansatz } \\ & 2 \mathrm{~N} \text { unknowns } \\ & \text { for N regions }\end{aligned} \quad \psi(x)=A_{+} e^{i k x}+A_{-} e^{-i k x} . \begin{aligned} & \psi(x)=D e^{-\alpha x}+E e^{+\alpha x} \\ & \psi\end{aligned}$
2) $\psi(x=-\infty)=0 \longrightarrow$ Boundary Conditions at the edge $\psi(x=+\infty)=0 \quad$ Reduces 2 unknowns
3) $\left.\psi\right|_{x=x_{B}^{-}}=\left.\psi\right|_{x=x_{B}^{+}} \quad$ Boundary Condition at each interface:
$\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{-}}=\left.\frac{d \psi}{d x}\right|_{x=x_{B}^{+}} \longrightarrow \begin{aligned} & \text { Set } 2 \mathrm{~N}-2 \text { equations for } \\ & 2 \mathrm{~N}-2 \text { unknowns (for continuous } \mathrm{U} \text {) }\end{aligned}$
4) Det (coefficient matrix) $=0$ And find E by graphical or numerical solution
5) $\int_{-\infty}^{\infty}|\psi(x, E)|^{2} d x=1$

Normalization of unity probability for wave function

- The complete transfer matrix

- In general for any intermediate set of layers, the I IIM is expressed as:

$$
\binom{A_{n-1}^{+}}{A_{n-1}^{-}}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{A_{n}^{+}}{A_{n}^{-}}
$$

- For multiple layers the overall transfer matrix will be
$\binom{A_{\mathrm{N}}}{B_{\mathrm{N}}}=\prod_{j=2 . \mathrm{N}} \underline{T}_{j}\binom{A_{1}}{B_{1}}$.
- Looks conceptually very simple and analytically pleasing
- Use it for your homework assignment for a double barrier structure!

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
"(Almost) Free Electrons
"Tightly bound electrons - infinite potential well
"Electrons in a finite potential well
" Tunneling through a single barrier
- Numerical Solutions to Toy Problems
"Tunneling through a double barrier structure
"Tunneling through N barriers
- Procedure Summary
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \quad k \equiv \sqrt{2 m_{0}[E-U(x)]} / \hbar
$$

$-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi$

$$
\begin{gathered}
\psi\left(x_{0}+a\right)=\psi\left(x_{0}\right)+\left.a \frac{d \psi}{d x}\right|_{x_{0}=a}+\left.\frac{a^{2}}{2} \frac{d^{2} \psi}{d x^{2}}\right|_{x_{0}=a}+\ldots \\
\psi\left(x_{0}-a\right)=\psi\left(x_{0}\right)-\left.a \frac{d \psi}{d x}\right|_{x_{0}=a}+\left.\frac{a^{2}}{2} \frac{d^{2} \psi}{d x^{2}}\right|_{x_{0}=a}-\ldots \\
\psi\left(x_{0}+a\right)+\psi\left(x_{0}-a\right)-2 \psi\left(x_{0}\right)=\left.a^{2} \frac{d^{2} \psi}{d x^{2}}\right|_{x_{0}=a} \\
\left.\frac{d^{2} \psi}{d x^{2}}\right|_{i}=\frac{\psi_{i-1}-2 \psi_{i}+\psi_{i+1}}{a^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& -\left(t_{0} a^{2}\right) \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi \\
& \left.\frac{d^{2} \psi}{d x^{2}}\right|_{i}=\frac{\psi_{i-1}-2 \psi_{i}+\psi_{i+1}}{a^{2}} \\
& {\left[-t_{0} \psi_{i-1}+\left(2 t_{0}+U_{i}\right) \psi_{i}-t_{0} \psi_{i+1}\right]=E \psi_{i}}
\end{aligned}
$$

$$
\begin{array}{ll}
{\left[-t_{0} \psi_{i-1}+\left(2 t_{0}+E_{C i}\right) \psi_{i}-t_{0} \psi_{i+1}\right]=E \psi_{i}} & (\mathrm{i}=2,3 \ldots \mathrm{~N}-1) \\
{\left[-t_{0} \psi_{0}^{\prime}+\left(2 t_{0}+E_{C i}\right) \psi_{1}-t_{0} \psi_{2}\right]=E \psi_{i}} & (\mathrm{i}=1) \\
{\left[-t_{0} \psi_{N-1}+\left(2 t_{0}+E_{C i}\right) \psi_{N}-t_{0} \psi_{N+1}\right]=E \psi_{i}} & (\mathrm{i}=\mathrm{N})
\end{array}
$$

[^0]: - Bandpass filter formed
 - Band transmission not symmetric

[^1]: - Bandpass filter formed
 - Band transmission not symmetric

[^2]: - Bandpass filter formed
 - Band transmission not symmetric

[^3]: - Bandpass filter formed
 - Band transmission not symmetric

