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1) Flat band voltage  - What is it and how to measure it?

2) Threshold voltage shift due to trapped charges

3) Physics of interface traps

4) Conclusion

Ref: Sec. 16.4 of SDF  Chapter 18, SDF
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(1) Idealized MOS Capacitor
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In the idealized MOS capacitor, the Fermi Levels in metal and semiconductor align 
perfectly so that at zero applied bias, the energy bands are flat
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Potential, Field, Charges
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No built in potential, fields or charges at zero applied bias in the idealized MOS structure
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Real MOS Capacitor with ΦΦΦΦM < ΦΦΦΦS
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Note the difference

Do we need to apply less or more VG to invert the channel ? 

In reality, the metal and semiconductor Fermi 
Levels are never aligned perfectly � when you 

bring them together there is charge transfer 
from the bulk of the semiconductor to the 

surface so that we have alignment
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Physical Interpretation of Flatband Voltage
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The Flatband Voltage is the voltage applied to the gate that gives zero-band bending in the MOS 
structure. Applying this voltage nullifies the effect of the built-in potential. This voltage needs to be 

incorporated into the idealized MOS analysis while calculating threshold voltage
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How to Calculate Built-in or Flat-band Voltage
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The presence of a flatband voltage lowers or raises the threshold voltage of a MOS structure. 
Engineering question � Is it desirable to have a metal having a work function greater or less 

than the electron affinity+(Ec-Ef) in the semiconductor?
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Measure of Flat-band shift from C-V Characteristics
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The transition point between accumulation and depletion in a non-ideal MOS structure is 
shifted to the left when the metal work function is smaller that the electron affinity +(Ec-Ef). 
At zero applied bias the semiconductor is already depleted so that a very small positive 
bias inverts the channel. The flatband voltage is the amount of voltage required to shift the 

curve such that the transition point is at zero bias.
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(2) Idealized MOS Capacitor
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Distributed Trapped charge in the Oxide
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In the absence of charges in the oxide, the field is constant 
(dV/dx = constant). The presence of a charge distribution inside 
the oxide changes the field inside the oxide and effectively traps 
field lines comping from the gate. As a result, depending on the 
polarity of charges in the oxie, the threshold voltage is modified.

xm represents the centroid of 
the charge distribution – one 
can think of this as replacing 
the entire distribution with a 

delta charge at this point
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An Intuitive View 
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Gate Voltage and Oxide Charge
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Kirchoff’s Law – balancing voltages

Known from boundary 
conditions in semiconductor 

and continuity of E
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Gate Voltage and Oxide Charge
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Interpretation for Bulk Charge 
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Interpretation for Interface Charge
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Time-dependent shift of Trapped Charge
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Bias Temperature Instability (Experiment)
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Outline
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1) Flat band voltage  - What is it and how to measure it?

2) Threshold voltage shift due to trapped charges

3) Physics of interface traps

4) Conclusion

Ref: Sec. 16.4 of SDF  Chapter 18, SDF
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SiO and SiH Bonds
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Local ordering tetrahedra

No long-range 
order
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Interface States

22Unpassivated bonds ~1014 cm-2
With annealing technology
Unpassivated bonds ~1010 cm-2
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‘Annealing’ of Interface States
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HH H

Forming gas 
anneal

111 surface data
BUT: 110 surface has

1/3 less dangling
bonds

Good MOSFET requires 
about 1010/cm2
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C-V Stretch Out
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HH H

Forming gas 
anneal

Good MOSFET requires 
about 1010/cm2
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Nature of Donor and Acceptor Traps
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Acceptor level
Neutral when empty
Negative when full

Donor level
Positive when empty 
Neutral when full

Combination when 
both are present

Now the surprising part:
Hydrogen passivation can act as a donor and as an acceptor leve
Depends on details of bond configuration
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Donor like Interface States
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Assume the charges would
NOT be voltage dependent
=> solid shift 
BUT: charges change with 
voltage
=> smooth shift 
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Acceptor like Interface States

27

C/Cox

VG

0

-1

* 0( ( ))
( ) ox

th G th
o

G

x

V Q x
V V V

C

α+=

0

-1

( ) 0GVα = 0 1( )GVα< < 1( ~)GVα

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Acceptor and Donor Traps Combined
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Summary
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1) Non-ideal threshold characteristics are important 

consideration of MOSFET design. 

2) The non-idealities arise from differences in gate and 

substrate work function, trapped charges, interface 

states. 

3) Although nonindeal effects often arise from transistor 

degradation, there are many cases where these 

effects can be used to enhance desirable 

characteristics. 


