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Outline

2

1) Square law/ simplified bulk charge theory
2) Velocity saturation in simplified theory
3) Few comments about bulk charge theory, small 

transistors 
4) Flat band voltage  - What is it and how to measure it?
5) Threshold voltage shift due to trapped charges
6) Conclusion

Ref: Sec. 16.4 of SDF  Chapter 18, SDF
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Post-Threshold MOS Current (VG>Vth)
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Formula overview –
derivation to follow
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2ψ B

Effect of Gate Bias
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P

S G D

B

VGS

n+ n+

Gated doped or p-MOS with adjacent n+ region
a)  gate biased at flat-band
b)  gate biased in inversion

A. Grove, Physics of Semiconductor Devices, 
1967.

WDM

VGS > VT

WD

VBI

y

No source-drain bias
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The Effect of Drain Bias

Alam  ECE-606 S09 5

2D band diagram for an 
n-MOSFET

a)  device

b)  equilibrium (flat band)

c)  equilibrium (ψS > 0)

d)  non-equilibrium with VG and 
VD >0 applied

SM. Sze, Physics of 
Semiconductor Devices, 1981 
and Pao and Sah.

FN
Depletion very 
different in source and 
drain side Gate voltage must ensure channel formation=> LARGE
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Effect of a Reverse Bias at Drain
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ψ S = 2ψ B + VRVBI + VR

WDM

VGS > VT VR( )

WD

VR
VR

Gated doped or p-MOS with adjacent, reverse-biased  n+ region
a)  gate biased at flat-band
b)  gate biased in depletion
c)  gate biased in inversion

A. Grove, Physics of Semiconductor Devices, 1967.

VR
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Inversion Charge in the Channel
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D

Channel - Drain)
Band diagrams (Gate –

Channel - Drain)

Body potential = constant, n+ 
region potential lowered

Due to drain bias, additional gate voltage (as 
compared to threshold in MOSCAP) is now 
needed to invert the channel throughout its 

length
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Inversion Charge at one point in Channel
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Approximations for Inversion Charge
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( )i ox G thQ C V V V≈ − − −

( )i ox G thQ C V VmV≈ − − −

Approximations: 

Square law approximation …

Simplified bulk charge approximation …
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The MOSFET

10

P

S G D

B

n+ n+

VS = 0 VD > 0

Fn = Fp = EF

Fn = Fp − qVD

Fn increasingly negative from source to drain
(reverse bias increases from source to drain)
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Elements of Square-law Theory
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VG VD>00
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GCA : Ey << Ex
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VG V VG

Voltage and hence inversion charge vary spatially
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Charge along the channel …. 

p

n

( )− −= C nE F
Cn N e β ( )−= V pE F

Cp N e β
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Charge along the channel … 

( )− −= C nE F
Cn N e β ( )−= V pE F

Cp N e β

VG VD>00

VD
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Depletion into the  channel …. 

NA

n

( )− −= C nE F
Cn N e β ( )−= V pE F

Cp N e β

VG

WT(VD=0) WT(VD)

VD
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Depletion into the channel … 

VG VD>00

Depletion
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Another view of Channel Potential

16
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Square Law Theory
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Square Law or Simplified Bulk Charge Theory
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Why square law? And why does it become invalid
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This situation doesn’t arise since 
electrons travelling from left to right 
are swept into the drain under the 
effect of the reverse bias applied
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Linear Region (Low VDS)
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1) Square law/ simplified bulk charge theory
2) Velocity saturation in simplified theory
3) Few comments about bulk charge theory, small 

transistors 
4) Flat band voltage  - What is it and how to measure it?
5) Threshold voltage shift due to trapped charges
6) Conclusion

Ref: Sec. 16.4 of SDF   Chapter 18, SDF
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Velocity vs. Field Characteristic (electrons)
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Velocity saturates at high fields because of scattering

This expression can be used to re-derive the expression for current since since 
mobility is now, in principle, a function of distance
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Recap  - derivation for MOSFET current
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Velocity Saturation
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Significance of the new expression

25

( )
2

0

2
ox D

D G th D
D

ch
c

C mV
J V V V

V
L

µ  
= − − 

 +
E

• At very small channel lengths and high drain biases, the 
current expression becomes independent of the channel 
length

• In the linear region in the I-Vd characteristics, you have a 
resistance that doesn’t depend on the length of the channel
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Calculating VDSAT
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Take log on both sides and then set the derivative to zero ….

<
V
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−V

T( )
m



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Velocity Saturation in short channel devices
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This expression can be derived by plugging in 
the value of Vd,sat for the short channel regime
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‘Linear Law’ Expression at the limit of L --> 0
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Current independent of L

28
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‘Signature’ of Velocity Saturation
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Can pull out oxide thickness from experimental curves… How?
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ID and (VGS - VT):  In practice …..
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Outline
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1) Square law/ simplified bulk charge theory
2) Velocity saturation in simplified theory
3) Few comments about bulk charge theory, small 

transistors 
4) Flat band voltage  - What is it and how to measure it?
5) Threshold voltage shift due to trapped charges
6) Conclusion

Ref: Sec. 16.4 of SDF    Chapter 18, SDF
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Approximations for Inversion Charge
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( )i ox G thQ C V V V≈ − − −

( )i ox G thQ C V V mV≈ − − −

Approximations: 

Square law approximation …

Simplified bulk charge approximation …

32

One could substitute the expression for Qi above explicitly instead of using m to 
simplify the equation, resulting in a more complete bulk charge expression
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Complete Bulk-charge Theory 

01,0 0

[.........( ) .]
=

= − − +∑ ∫ ∫
D DV

D
O G th

i N

V
J

dy C V V V dV dV
µ

( )
3 / 22

0 4 3
1 1

3 2 42

     + − +    
     

 
 = − − −
 
 

A T D D
F

O F

ox D
D G th D

ch F

C V
J V V V

L

qN W V V

C
φ

φ
µ

φ

00 0 0

[...... . .]( ) . .= − − +∫ ∫ ∫
ch D DL V

D
O G th

V
J

dy C V V V dV dV
µ

(Eq. 17.28 in SDF)   …. Explicit dependence on bulk doping

33

Additional V dependent terms 
abstracted into m previously
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Velocity Overshoot
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34

Valid for bulk semiconductors, 
not valid at top of the barrier
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Velocity Overshoot in a MOSFET

35

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intermediate Summary

1) Velocity saturation is an important consideration for short 

channel transistors (e.g., VD=1V, Lch=20nm).  Therefore, 

α ~ 1 for most modern transistors.

2) Bulk charge theory explains why MOSFET current 

depends on substrate (bulk) doping. In the simplified bulk 

charge theory,  doping dependence is encapsulated in m. 

3) Additional considerations of velocity overshoot could 

complicate calculation of current. 

4) Good news is that for very short channel transistors, 

electrons travel from source to drain without scattering. A 

considerably simpler ‘Lundstrom theory of MOSFET’ 

applies. 
36
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Outline
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1) Square law/ simplified bulk charge theory
2) Velocity saturation in simplified theory
3) Few comments about bulk charge theory, small 

transistors 
4) Flat band voltage  - What is it and how to measure 

it?
5) Threshold voltage shift due to trapped charges
6) Conclusion

Ref: Sec. 16.4 of SDF  Chapter 18, SDF
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(1) Idealized MOS Capacitor

38
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B
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ox

Q
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In the idealized MOS capacitor, the Fermi Levels in metal and semiconductor align 
perfectly so that at zero applied bias, the energy bands are flat
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Potential, Field, Charges

39

χs

Φm

χi
V

E

Vbi=0 ρ

x

x

x

No built in potential, fields or charges at zero applied bias in the idealized MOS structure
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Real MOS Capacitor with ΦΦΦΦM < ΦΦΦΦS

40

ΦM = qφm χS

ΦS

qψ S > 0

EC

EV

EF

EVAC

EC

EV

EF

Note the difference

Do we need to apply less or more VG to invert the channel ? 

In reality, the metal and semiconductor Fermi 
Levels are never aligned perfectly � when you 

bring them together there is charge transfer 
from the bulk of the semiconductor to the 

surface so that we have alignment
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Physical Interpretation of Flatband Voltage
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+ −

The Flatband Voltage is the voltage applied to the gate that gives zero-band bending in the MOS 
structure. Applying this voltage nullifies the effect of the built-in potential. This voltage needs to be 

incorporated into the idealized MOS analysis while calculating threshold voltage
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How to Calculate Built-in or Flat-band Voltage
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The presence of a flatband voltage lowers or raises the threshold voltage of a MOS structure. 
Engineering question � Is it desirable to have a metal having a work function greater or less 

than the electron affinity+(Ec-Ef) in the semiconductor?
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Measure of Flat-band shift from C-V Characteristics

43

C/Cox

VG

Ideal Vth

Actual Vth

The transition point between accumulation and depletion in a non-ideal MOS structure is 
shifted to the left when the metal work function is smaller that the electron affinity +(Ec-Ef). 
At zero applied bias the semiconductor is already depleted so that a very small positive 
bias inverts the channel. The flatband voltage is the amount of voltage required to shift the 

curve such that the transition point is at zero bias.
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Outline
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1) Square law/ simplified bulk charge theory
2) Velocity saturation in simplified theory
3) Few comments about bulk charge theory, small 

transistors 
4) Flat band voltage  - What is it and how to measure it?
5) Threshold voltage shift due to trapped charges
6) Conclusion

Ref: Sec. 16.4 of SDF  Chapter 18, SDF
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(2) Idealized MOS Capacitor

45
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Distributed Trapped charge in the Oxide
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In the absence of charges in the oxide, the field is constant 
(dV/dx = constant). The presence of a charge distribution inside 
the oxide changes the field inside the oxide and effectively traps 
field lines comping from the gate. As a result, depending on the 
polarity of charges in the oxie, the threshold voltage is modified.

xm represents the centroid of 
the charge distribution – one 
can think of this as replacing 
the entire distribution with a 

delta charge at this point
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An Intuitive View 
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Ideal charge-free oxide
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Gate Voltage and Oxide Charge
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Kirchoff’s Law – balancing voltages

Known from boundary 
conditions in semiconductor 
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Gate Voltage and Oxide Charge
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Interpretation for Bulk Charge 
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Interpretation for Interface Charge
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Time-dependent shift of Trapped Charge
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Bias Temperature Instability (Experiment)
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Conclusion
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1) Non-ideal threshold characteristics are important 

consideration of MOSFET design. 

2) The non-idealities arise from differences in gate and 

substrate work function, trapped charges, interface 

states. 

3) Although nonindeal effects often arise from transistor 

degradation, there are many cases where these 

effects can be used to enhance desirable 

characteristics. 


