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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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How to make a better Transistor
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Heterojunction Bipolar Transistors
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n
emitter

n
collector n+

EG1>EG2

p+
base

EG2 EG2

i) Wide gap Emitter HBT

ii) Double Heterojunction Bipolar Transistor

n
emitter

n
collector n+

EG1>EG2

p+
base

EG2 EG3>EG2
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Mesa HBTs

5

n
emitter

n
collector n+

EG1>EG2

p+
base

EG2 EG3>EG2

p+ base
n-collector

n+

semi-insulating substrate

n
Mesa HBT

Intentional traps, 
Fermi level pinned
Low conductance
Low capacitance
High speed
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Applications
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1) Optical fiber communications
-40Gb/s…….160Gb/s

2) Wideband, high-resolution DA/AD converters
and digital frequency synthesizers

-military radar and communications

3) Monolithic, millimeter-wave IC’s (MMIC’s)

-front ends for receivers and transmitters

future need for transistors with 1 THz power-gain cutoff freq.
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Background
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A heterojunction bipolar transistor

Schokley realized that HBT is possible, but Kroemer really 
provided the foundation of the field and worked out the details.

Kroemer 
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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Topic Map

9

Equi libr ium DC Small 
signal

Large 
Signal

Circuits

Diode

Schottky

BJT/HBT

MOS
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Bandgaps and Lattice Matching
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Band Diagram at Equilibrium
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N-Al0.3Ga0.7As: p-GaAs
(Type-I Heterojunction)
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Abrupt junction HBT

Vacuum Level

EC

EV

EF

χ2

χ1

  EG
≈ 1.80 eV

  EG
≈ 1.42 eV

ND NA
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Built-in Potential: Boundary Condition @Infinity 
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Interface Boundary Conditions
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Analytical Solution for Heterojunctions
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Base Emitter Depletion Region
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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N-Al0.3Ga0.7As: p-GaAs
(Type-I Heterojunction)
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Abrupt junction HBT

Vacuum Level

EC

EV

EF

χ2

χ1

  EG
≈ 1.80 eV

  EG
≈ 1.42 eV

ND NA
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P-Al0.3Ga0.7As : n-GaAs (Type I junctions)

Alam  ECE-606 S09 19
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N-p vs P-n of Type I Heterostructure
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(AlInAs/InP) Type II Junctions
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ND NA

Vacuum level

EC
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χ2
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N-Al0.3Ga0.7As : n-GaAs Junctions
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 EC

 EV

 EC

 EV

  EG
≈ 1.80 eV

  EG
≈ 1.42 eV

‘Isotype Heterojunction’

 EV

Accumulation LayerDepletion Layer

Metal-Metal junctions have similar features … 
different workfunctions => different band lineups

thermoelectric coolers , 
electrons traveling from one side to the other 

can gain and lose energy
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P-GaSb : n-InAs (Type III) 
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 EC

 EV

 EC

 EV

  E0 Field-free vacuum level

 χ1

 χ2

 EFP

  EG
≈ 0.72 eV

 EFn

  EG
≈ 0.36 eV
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P-GaSb : n-InAs (Type III) 
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 EV
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 EV

  ∆E
C

= 0.87 eV

 EF
  EG

≈ 0.72 eV

  EG
≈ 0.36 eV

Accumulation Layer!Accumulation Layer!
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Conclusion

25

1. Heterojunction transistors offer a solution to the 
limitations of poly-Si bipolar transistors. 

2. Equilibrium solutions for HBTs are very similar to 
those of normal BJTs. 

3. Depending on the alignment, there could be different 
types of heterojuctions.  Each has different usage. 

4. We will discuss current transport in HBTs in the next 
section.
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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Abrupt Junction HBTs
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… but we are hoping for even better gain
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Abrupt Junction
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Graded Base-Emitter Junction
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Current Gain 
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Advantages of HBT: Inverted Base Doping
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/G BE k TDE n E
DC

AB p B

N D W
e

N D W
β ∆≈

1) Thin Base for high speed

2) Very heavily doped Base to prevent Punch Through,
reduce Early effect, and to lower Rex

3)  Moderately doped Emitter (lower Cj,BE)

“inverted base doping” NAB >> NDE
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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How to make a better Transistor

35

( ),

, ,

,

2
, , ,

2
, , ,

g B

g E g B

g E

E
E Ei B C B V B

E
i E C E V E

n N N e
e

n N N e

−
−

−= ≈
β

β
β

Heterojunction bipolar transistor

Graded Base transport

Polysilicon Emitter

2
,

, 2
,

i B E n B
poly ballistic

i E B s

n N D W

n N
β

υ
→ × ×

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Graded Bases
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Graded Base HBTs
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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Double HBJT
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EGE > EGB
EGC > EGE

•  Symmetrical operation
(simplify circuiots)

•  No charge storage when
the b-c junction is forward
biased
(ni is smaller)

•  Reduced collector offset
voltage

•  Higher collector
breakdown voltage
(higher gap)
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Offset Voltage

40

IC

IB

VCE

does I C = 0 at VCE = 0?

C

E

B IC
VB

I B



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Offset Voltage
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set JC = 0, assume VE = 0, solve for VC=VOS
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Offset Voltage Result
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γ = = (Reverse Emitter injection efficiency)

Want a large γR for small Vos.  Wide bandgap collector helps.
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1. Introduction
2. Equilibrium solution for heterojunction
3. Types of heterojunctions
4. Intermediate Summary
5. Abrupt junction HBTs
6. Graded junction HBTs
7. Graded base HBTs
8. Double heterojunction HBTs
9. Conclusions – modern design

“Heterostructure Fundamentals,” by Mark    Lundstrom, Purdue 
University, 1995. 

Herbert Kroemer, “Heterostructure bipolar transistors and 
integrated circuits,” Proc. IEEE , 70, pp. 13-25, 1982.
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Putting the Terms Together

44

2

, ,

1

2 2 2
B BC

T n sat

B
j BC j BE

C

W W

f D

k T
C C

qI

 
= + + 
 

 + 

π υ

10log Tf

10log CI

Kirk Current
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Epitaxial Layer Design (II)
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DHBT:  Abrupt InP emitter, InGaAs base, InAlGaAs C/B grades
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Epitaxial Layer Design (III)

46
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Summary

4
7

1) The use of a wide bandgap emitter has two benefits:
-allows heavy base doping
-allows moderate emitter doping

2) The use of a wide bandgap collector has benefits:

-symmetrical device
-reduced charge storage in saturation
-reduced collector offset voltage
-higher  collector breakdown voltage

3) Bandgap engineering  has potential benefits:

-heterojunction launching ramps
-compositionally graded bases
-elimination of band spikes

4) HBTs have the potential for THz cutoff frequencies. 
However, it has yield issues and heating and contact R problems. 
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Outline from previous lecture
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1) Current gain in BJTs 

2) Considerations for base doping

3) Considerations for collector doping

4) Intermediate Summary

5) Problems of classical transistor

6) Poly-Si emitter

7) Short base transport

8) High frequency response

9) Conclusions

REF: SDF, Chapter 10
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Topic Map
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Equilibrium DC Small 
signal

Large 
Signal

Circuits

Diode

Schottky

BJT/HBT

MOS

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Small Signal Response 
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Desire high fT
⇒High IC
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⇒Low widths
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Frequency Response
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� The gain of an amplifier is affected by the capacitance associated with its circuit.
� This capacitance reduces the gain in both the low and high frequency ranges of 

operation.
� The reduction of gain in the low frequency band is due to the coupling

and bypass capacitors selected. They are essentially short circuits in the
mid and high bands.

� The reduction of gain in the high frequency band is due to the internal
capacitance of the amplifying device, e.g., BJT, FET, etc.

� This capacitance is represented by capacitors in the small signal equivalent circuit 
for these devices. They are essentially open circuits in the low and mid bands.
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Small Signal Response (Common Emitter)
From Ebers Moll Model
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Short Circuit Current Gain
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Short Circuit Current Gain
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Short Circuit Current Gain
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Base Transit Time
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Collector Transit Time
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Electrons injected into collector depletion 
region – very high fields more than 
diffusion => drift => acceleration of carriers
Charge imaged in collector 
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Putting the Terms Together
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10log Tf
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Kirk Current

Do you see the motivation to reduce WB and WBC as much as possible? 
What problem would you face if you push this too far ? 

KI

Increasing IC too high reduces WBC and increases the overall capacitance
=> frequency rolls off….  



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

High Frequency Metrics
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Summary
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We have discussed various modifications of the classical 

BJTs and explained why improvement of performance 

has become so difficult in recent years.

The small signal analysis illustrates the importance of 

reduced junction capacitance, resistances, and transit 

times. 

Classical homojunctions BJTs can only go so far, further 

improvement is possible with heterojunction bipolar 

transistors. 


