Network for Computational Nanotechnology (NCN)

ECE606: Solid State Devices Lecture 2

Gerhard Klimeck
gekco@purdue.edu

PURDUE

U N I V E R S I T Y

- Course information
- Motivation for the course
- Current flow in semiconductors
- Types of material systems
- Classification of crystals
" Bravais Lattices
"Packing Densities
» Common crystals - Non-primitive cells
$\checkmark \mathrm{NaCl}, \mathrm{GaAs}, \mathrm{CdS}$
"Surfaces
$\leftarrow=====$ start here agains

- Reference: Vol. 6, Ch. 1
- Helpful software: Crystal Viewer in ABACUS tool at nanohub.org

1. Set up axes along the edges of unit cell
2. Normalize intercepts 2, 3, 1
3. Invert/rationalize intercepts ... 1/2, 1/3, 1
$3 / 6,2 / 6,6 / 6$
4. Enclose the numbers in curvilinear brackets (326)

Few more rules

Negative Intercept

2,	3,	-2
$1 / 2$,	$1 / 3$,	$-1 / 2$
3,	2,	-3
	$\left(\begin{array}{ll}3 & 2\end{array}\right)$	

Intercept at infinity

$$
\left.\begin{array}{|lcc|}
\hline 2, & 3, & \propto \\
1 / 2, & 1 / 3, & 0 \\
3, & 2, & 0 \\
& (3 & 2
\end{array}\right)
$$

Miller indices: (326)

$$
\vec{R}_{1}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \quad \vec{R}_{2}=\left(\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right)
$$

Normal to the surface and $\mathrm{R}_{1}, \mathrm{R}_{2}$
$R_{2} \times R_{1}=\left|\begin{array}{ccc}a & b & c \\ -2 & 3 & 0 \\ -2 & 0 & 1\end{array}\right|=3 a+2 b+6 c$

Vector indices same as Miller indices!
(326) vs. [326]

Purdul Specification of vectors normal to a particular plane!

Angle between Two Planes
\Rightarrow Angle between two vectors
\Rightarrow Dot product / inner product between two vectors

Unit vector normal to plane 1:
$N_{1}=\left(h_{1} \vec{a}+k_{1} \vec{b}+l_{1} \vec{c}\right) /\left(h_{1}^{2}+k_{1}^{2}+l_{1}^{2}\right)^{1 / 2}$

Unit vector normal to plane 2:

$$
N_{2}=\left(h_{2} \vec{a}+k_{2} \vec{b}+l_{2} \vec{c}\right) /\left(h_{2}^{2}+k_{2}^{2}+l_{2}^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \operatorname{Cos}(\theta)=N_{1} \bullet N_{2} \\
& =\left(h_{2} h_{1}+k_{2} k_{1}+l_{2} l_{1}\right) /\left(h_{2}^{2}+k_{2}^{2}+l_{2}^{2}\right)^{1 / 2}\left(h_{2}^{2}+k_{2}^{2}+l_{2}^{2}\right)^{1 / 2}
\end{aligned}
$$

$N_{1} \cdot T=\cos \left(\theta_{1}\right)=(1 \times \theta+0 \times \neq+0 \times 1) /(1 \times \sqrt{ } 5)=0$, so $\theta=90$ degrees [021] vector lies on (100) plane.
$\mathrm{N}_{2} \cdot \mathrm{~T}=\cos \left(\theta_{2}\right)=(0 \times 0+2 \times 1+1 \times 1) /(\sqrt{ } 5 \sqrt{ } 2)=3 / \sqrt{ } 10$, so $\theta=18.43$ degrees with respect to [011] direction.

First three indices sum to zero.

- Course information
- Motivation for the course
- Current flow in semiconductors
- Types of material systems
- Classification of crystals
" Bravais Lattices
" Packing Densities
" Common crystals - Non-primitive cells
$\checkmark \mathrm{NaCl}, \mathrm{GaAs}, \mathrm{CdS}$
"Surfaces
- Reference: Vol. 6, Ch. 1
- Helpful software: Crystal Viewer in ABACUS tool at nanohub.org

1. To understand transport in semiconductors, we need to know carrier density (n) and carrier velocity (v). In order to find these quantities, we need to understand the chemical composition and atomic arrangements.
2. Crystalline material can be built by repeating the basic building blocks. This simplifies the quantum solution of the material, which will allow us to compute n and v for these systems easily.
3. Silicon, $\mathrm{GaAs}, \mathrm{PbS}$ do not have simple Bravais lattice; but they have Bravais lattice with basis.
4. Often we need to calculate the direction of crystal planes because material properties differ along different planes. Miller indices are one useful way of characterizing crystal planes. In is useful to to review some identities of vector calculus to such calculations involving crystal planes.

ECE606: Solid State Devices Lecture 2
 Quantum Mechanies

 WHAT?Gerhard Klimeck

- Classical Systems
" Particles
"Propagating Waves
" Standing Waves
" Chromatography
- Strange Experimental Results => The Advent of Quantum Mechanics
" Discrete Optical Spectra
"Photoelectric Effect
" Particle-Wave Duality
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

Properties:

- Have a finite extent
- continuous (ignoring atomic granularity)
- Have a finite weight
- continuous (ignoring atomic granularity)
- Are countable with integers
- discrete

Laws of Motion

- Classical Newtonian Mechanics

Interactions with other particles

- Energy continuity
- Momentum continuity

Example

- Billiard balls

Propagating Plane Waves
Properties:

- Have infinite extent

$$
x=\frac{\omega t}{k}
$$

- Have finite wavelength
- Have a finite frequency

Laws of Motion $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} x}{\partial x^{2}}=0$

- Wave equation $\hat{u}=u_{0} \sin (k x-\omega t) \quad c= \pm \omega / k= \pm \lambda f$

Interactions with other waves / environment

- Coherent superposition

MMMMMMM
MOMMOMMM
$=$
MOMWOVNOMN
http://www.qmw.ac.uk/~zgap118/5
=> interference, constructive and destructive => one wave can cancel out another

- Huygens principle: one plane wave made up by many circular wa

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- All waves can be represented by point sources
- This animation shows an example of a single point source

Huygens' Principle

- All waves can be represented by point sources
- This animation shows an example of multiple single point sources creating a wavefront.

http://id.mind.net/~zona/mstm/physics/waves/propagatio

$\%$ \%
 Propagating Plane Waves
 Light is an Electromagnetic Wave

Properties:

- Have infinite extent - Not countable
- Have finite wavelength Continuous
- Have a finite frequency Continuous

Laws of Motion $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} x}{\partial x^{2}}=0$

- Wave equation $u=u_{0} \sin (k x-\omega t) \quad c= \pm \omega / k= \pm \lambda f$

Interactions with other waves / environment

- Coherent superposition
=> interference, constructive and destructive => one wave can cancel out another
- Huygens principle:
one plane wave made up by many circular waves => diffraction
=> light goes around corners

Accepted Proof:

http://en.wikipedia.org/wiki/Double-slit experimen

- Light is an electromagnetic wave

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

Properties:

- Have finite extent
- Countable in $1 / 2$ waveleng"
- Have discrete wavelengths
- Integer multiples
- Have discrete frequencies
- Integer fractions

Laws of Motion $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} x}{\partial x^{2}}=0$

- Wave equation $\left\{u_{0} \sin (k x-\omega t) ; 0 \leq x \leq L\right.$
- One solution $u=\left\{\begin{array}{cc}u_{0} \sin (k x-\omega t) ; 0 \leq x \leq L \\ 0 ; & x<0 ; x>L\end{array} \quad k_{j}=j \frac{\pi}{L} \quad\right.$ - Quantized momentum k_{j}

Interactions with other waves / environment

- Coherent superposition => e.g. sounds add in an instrument
- A standing wave is a resonator
- one resonator can couple to another => e.g. string <=> guitar => energy is transferred between resonators => energy conservation
- resonators must be "in-tune" => momentum conservation

- "White" light consists of a broad spectrum of colors
- Each individual color is associated with a particular frequency of wave
- A prism can dissect white light into its frequency components
- Is there some information in this kind of frequency spectrum? => chromatography
- Classical Systems
"Particles
" Propagating Waves
" Standing Waves
" Chromatography

- Strange Experimental Results => The Advent of Quantum Mechanics
" Black Body Radiation
" Discrete Optical Spectra
» Photoelectric Effect
"Particle-Wave Duality

Interpretation of Plank's Formula

$$
u(f, T)=u(\lambda, T) \frac{d \lambda}{d f} \sim \frac{1}{\lambda^{5}}\left[\frac{1}{e^{\beta / \lambda T}-1}\right] \frac{d \lambda}{d f} \quad \lambda=\frac{c}{f}
$$

$$
\sim f^{2} \times h f \times\left(\frac{1}{\mathrm{e}^{h f / k T}-1}\right)
$$

EM emission occurs in discrete quanta of

$$
E=h f \quad \mathrm{n}=1,2, \ldots \ldots \ldots \mathrm{~N}
$$

Show that the cosmic background temperature is approximately 3K. Can you "see" this radiation?

Presentation Outline

- Classical Systems
"Particles
" Propagating Waves
" Standing Waves
"Chromatography

- Strange Experimental Results => The Advent of Quantum Mechanics
"Black Body Radiation => light emission is quantized
" Discrete Optical Spectra
"Photoelectric Effect
"Particle-Wave Duality
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

Strange Experimental Observations The Advent of Quantum Mechanics

Discrete light spectrum:

- Light emitted from hot elemental materials has a discrete spectrum
- The spectrum is characteristic for the material (fingerprint)
- E.g.: H spectrum
- E.g.: Iro

- E.g. application - bright yellow Na lamps
=> lot of excitation energy converted into single frequency

Development of atomic models

- Bohr atom model - electrons in looping orbits

(3) Bohr Atom .

Assume that angular momentum is quantized:

$$
\begin{aligned}
& L_{\mathbf{n}}=m_{0} v r_{\mathbf{n}}=\mathbf{n} \hbar \\
& v=n \hbar / m_{0} r_{n} \\
& \frac{m_{0} v^{2}}{r_{\mathbf{n}}}=\frac{q^{2}}{4 \pi \varepsilon_{0} r_{\mathbf{n}}^{2}} \\
& r_{\mathbf{n}}=\frac{4 \pi \varepsilon_{0}(\mathbf{n} \hbar)^{2}}{m_{0} q^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& r_{\mathbf{n}}=\frac{4 \pi \varepsilon_{0}(\mathbf{n} \hbar)^{2}}{m_{0} q^{2}} \\
& \text { K.E. }=\frac{1}{2} m_{0} v^{2}=\frac{1}{2}\left(q^{2} / 4 \pi \varepsilon_{0} r_{\mathbf{n}}\right)
\end{aligned}
$$

$$
\text { P.E. }=-q^{2} / 4 \pi \varepsilon_{0} r_{\mathrm{n}} \quad(\text { P.E. set }=0 \text { at } r=\infty)
$$

$$
E_{\mathbf{n}}=\text { K.E. }+ \text { P.E. }=-\frac{1}{2}\left(q^{2} / 4 \pi \varepsilon_{0} r_{\mathbf{n}}\right)
$$

$$
E_{\mathbf{n}}=-\frac{m_{0} q^{4}}{2\left(4 \pi \varepsilon_{0} \mathbf{n} \hbar\right)^{2}}=-\frac{13.6}{\mathbf{n}^{2}} \mathrm{eV}
$$

$$
E_{m, n}=\operatorname{const} \times\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)
$$

\%\%๐

Presentation Outline

- Classical Systems
"Particles
"Propagating Waves
"Standing Waves
"Chromatography

- Strange Experimental Results => The Advent of Quantum Mechanics
» Black Body Radiation => light emission is quantized
"Discrete Optical Spectra => light emission/absorption quantized
"Photoelectric Effect
" Particle-Wave Duality
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

Strange Experimental Observations The Advent of Quantum Mechanics

Photoelectric Effect:

- Light can eject electrons from a clean metal

http://en.wikipedia.org/wiki/Photoelectric_effect
Light consists of particles
Photons
- Light can be described by discrete particles of discrete energy
- Planck's constant - h
- Light energy is not divisible
- Have to have minimum energy to kick out an electron from the bound state

$$
E_{\text {Binding }}=h f_{m} \quad E_{\text {kinetic }}=E_{\text {light }}-E_{\text {Binding }}=h\left(f_{\text {light }}-f_{m}\right) \geq 0
$$

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam
 $q V_{R} \approx(1 / 2) m_{0} v^{2}=h f-W$

Absorption occurs in quanta as well, consistent with photons having $\boldsymbol{E}=\boldsymbol{h} \boldsymbol{f}$

- Classical Systems
»Particles
" Propagating Waves
" Standing Waves
" Chromatography

- Strange Experimental Results => The Advent of Quantum Mechanics
"Black Body Radiation => light emission is quantized
" Discrete Optical Spectra
=> light emission/absorption quantized
"Photoelectric Effect
=> light is described by particles
" Particle-Wave Duality
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

All particles have a wave property

- Can interfere
- Can diffract
- Can form standing waves

All waves have particle properties

- Have momentum
- Have an energy
- Can be created and destroyed

Typical descriptions:

- Energy E, frequency f, Momentum k
- A set of discrete quantum numbers
- Choose wave/particle description according to problem

Photons act both as wave and particle, what about electrons?

$$
\begin{aligned}
& E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}} \\
& \downarrow f=p c \quad m_{0}=0 \text { (photon rest mass) }
\end{aligned}
$$

$$
\begin{aligned}
p & =h f / c & & \\
& =h / \lambda & & (\text { because } c=\lambda f) \\
& =\hbar k & & (\text { because } k=2 \pi / \lambda)
\end{aligned}
$$

Presentation Outline

- Classical Systems
"Particles
" Propagating Waves
" Standing Waves
"Chromatography
- Strange Experimental Results
=> The Advent of Quantum Mechanics
»Black Body Radiation => light emission is quantized
"Discrete Optical Spectra => light emission/absorptionquantized
"Photoelectric Effect
$=>$ light is described by Pain Pointer " Particle-Wave Duality $\quad=>$ true for all waves and parficles
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

Which electrons contribute to device current?

Number of atoms/volume
from crystal structure
Number of electrons available for conduction

Number of electrons/atoms
$n \neq \rho \times N$

II	III	IV	v	VI
4	5	6	7	8
Be	в	C	N	o
${ }^{12} \mathrm{Mg}$	${ }^{13}{ }_{\mathrm{Al}}$	${ }^{14}{ }_{\mathrm{Si}}$	${ }^{15}$	${ }^{16}{ }_{\mathrm{s}}$
${ }^{30}{ }_{\mathrm{Zn}}$	${ }^{31} \mathrm{Ga}$	${ }^{32} \mathrm{Ge}$	${ }^{33} \mathrm{As}$	${ }^{34} \mathrm{se}$
${ }^{48} \mathrm{Cd}$	${ }^{49}$ In	${ }^{50} \mathrm{Sn}$	${ }^{51} \mathrm{Sb}$	${ }^{52} \mathrm{Te}$
${ }^{80}{ }_{\mathrm{Hg}}$	${ }^{81}{ }_{\mathrm{T} 1}$	${ }^{82}{ }_{\mathrm{Pb}}$	${ }^{83} \mathrm{Bi}$	${ }^{84} \mathrm{Po}$

All electrons may be created equally, but they appear do not behave identically!

Original
Problem

Electrons in periodic potential: Problem we want to solve

If it were large objects, like a skier skiing past a set of obstacles, Newton's mechanics would work fine, but in a micro-world \qquad

- Some electrons are closely bound to the atomic cores
- Some electrons are loosely bound
=> they can move through the structure freely
- Even free electrons need empty states to flow into => not only the states, but their filling is important!
sisp n Th

Carrier number $=$ Number of states x filling factor

Total number of occupants = Number of apartments X The fraction occupied

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- Classical Systems
"Particles
" Propagating Waves
" Standing Waves
" Chromatography
- Strange Experimental Results
=> The Advent of Quantum Mechanics
» Black Body Radiation $\quad=>$ light emission is quantized
"Discrete Optical Spectra => light emission/absorption quantized
"Photoelectric Effect => light is described by particles
" Particle-Wave Duality $\quad=>$ true for all waves and particles
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

$$
\begin{gathered}
E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}} \approx m_{0} c^{2}\left[1+p^{2} c^{2} / 2 m_{0}^{2} c^{4}+\ldots\right] \\
E-m_{0} c^{2}=V+\left(p^{2} / 2 m_{0}\right) \\
\downarrow \\
h f=\hbar \omega=V+\left(\hbar^{2} k^{2} / 2 m_{0}\right)
\end{gathered}
$$

$$
\hbar \omega=\left(\hbar^{2} k^{2} / 2 m_{0}\right)+V
$$

Assume, $\quad \Psi(x, t)=A \exp (-i(\omega t-k x))$

$$
d \Psi / d t=-i \omega \Psi \quad \text { and } d^{2} \Psi / d x^{2}=-k^{2} \Psi
$$

$$
i \hbar \frac{d \Psi}{d t}=\left(-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi}{d x^{2}}\right)+V \Psi
$$

- Classical Systems
"Particles
"Propagating Waves
"Standing Waves
"Chromatography
- Strange Experimental Results
=> The Advent of Quantum Mechanics
» Black Body Radiation => light emission is quantized
" Discrete Optical Spectra => light emission/absorption quantized
"Photoelectric Effect => light is described by particles
" Particle-Wave Duality $\quad=>$ true for all waves and particles
-Why do we need quantum mechanics?
- Formulation of Schrödinger's Eq.

1. Given chemical composition and atomic arrangements, we can compute electron density by using quantum mechar
2. We discussed the origin of quantum mechanics experiments were inconsistent with the classical theory.
3. We saw how Schrodinger equation can arise as a consequence of quantization and relativity, but this is not a derivation.
4. We will solve some toy problems in the next class to get a feeling of how to use quantum mechanics.

ECE606: Solid State Devices Lecture 3

Gerhard Klimeck
gekco@purdue.edu

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \Psi}{d x^{2}}+U(x) \Psi=i \hbar \frac{d \Psi}{d t} \quad \Psi(x, t)=\psi(x) e^{-i E t / \hbar} \\
-e^{-\frac{i E t}{\hbar}} \frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi(x)}{d x^{2}}+e^{-\frac{i E t}{\hbar}} U(x) \psi(x)=i \hbar \frac{-i E}{\hbar} \psi(x) e^{-\frac{i E t}{\hbar}} \\
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi \\
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m_{0}}{\hbar^{2}}(E-U) \psi=0
\end{gathered}
$$

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m_{0}}{\hbar^{2}}(E-U) \psi=0
$$

If $E>U$, then

$$
\begin{array}{rlrl}
k \equiv \frac{\sqrt{2 m_{0}[E-U]}}{\hbar} \quad \frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 & \psi(x) & =A \sin (k x)+B \cos (k x) \\
& \equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
\end{array}
$$

If U>E, then

$$
\alpha \equiv \frac{\sqrt{2 m_{0}[U-E]}}{\hbar} \quad \frac{d^{2} \psi}{d x^{2}}-\alpha^{2} \psi=0 \quad \psi(x)=D e^{-\alpha x}+E e^{+\alpha x}
$$

$$
-\frac{\hbar^{2}}{2 m_{0}} \frac{d^{2} \psi}{d x^{2}}+U(x) \psi=E \psi
$$

- Obtain $U(x)$ and the boundary conditions for a given problem.
- Solve the $2^{\text {nd }}$ order equation - pretty basic
- Interpret $|\psi|^{2}=\psi^{*} \psi$ as the probability of finding an electron at x
- Compute anything else you need, e.g.,

$$
p=\int_{0}^{\infty} \Psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \Psi d x \quad E=\int_{0}^{\infty} \Psi^{*}\left[-\frac{\hbar}{i} \frac{d}{d t}\right] \Psi d x
$$

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
" (Almost) Free Electrons
" Tightly bound electrons - infinite potential well
" Electrons in a finite potential well
» Tunneling through a single barrier
- Numerical Solutions to Toy Problems
" Tunneling through a double barrier structure
" Tunneling through N barriers
- Additional notes
"Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \quad k \equiv \frac{\sqrt{2 m_{0}[E-U]}}{\hbar}
$$

1) Solution $\psi(x)=A \sin (k x)+B \cos (k x)$

$$
\equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
$$

2) Boundary condition $\quad \psi(x)=A_{+} e^{i k x} \quad$ positive going wave $=A_{-} e^{-i k x}$ negative going wave

$$
\begin{aligned}
\psi(x) & =A \sin (k x)+B \cos (k x) \\
& \equiv A_{+} e^{i k x}+A_{-} e^{-i k x}
\end{aligned}
$$

$\psi(x)=A_{+} e^{i k x} \quad$ positive going wave $=A_{-} e^{-i k x} \quad$ negative going wave

Probability:

$$
|\psi|^{2}=\psi \psi^{*}=\left|A_{+}\right|^{2} \text { or }\left|A_{-}\right|^{2}
$$

Momentum: $\quad p=\int_{0}^{\infty} \Psi^{*}\left[\frac{\hbar}{i} \frac{d}{d x}\right] \Psi d x=\hbar k$ or $-\hbar k$

Case 2: Bound State Problems

- Mathematical interpretation of Quantum Mechanics(QM)

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial}{\partial t} \Psi
$$

» Only a few number of problems have exact mathematical solutions
" They involve specialized functions

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

- (Step 1) Formulate time independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \text { where, } V(x)=\left\{\begin{array}{cc}
0 & 0<x<L_{x} \\
\infty & \text { elsewhere }
\end{array}\right.
$$

- (Step 2) Use your intuition that the particle will never exist outside the energy barriers to guess,

$$
\psi(x)=\left\{\begin{array}{cl}
0 & 0 \leq x \leq L_{x} \\
\neq 0 & \text { in the well }
\end{array}\right.
$$

- (Step 3) Think of a solution in the well as:

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi}{L_{x}} x\right), n=1,2,3, \ldots
$$

\%o

(Step 6) Normalization (determine the constant A)
Method 1) Use symmetry property of sinusoidal function

$$
\left|\psi_{n}(x)\right|^{2}=A^{2} \sin ^{2}\left(\frac{n \pi}{L_{x}} x\right)
$$

$$
\begin{aligned}
& \text { (Area) }=1=\frac{L_{x}}{2} \times A^{2} \\
& \therefore A=\sqrt{\frac{2}{L_{x}}}
\end{aligned}
$$

Method 2) Integrate $\mid \psi_{n}(x)^{2}$ over $0 \sim L_{x}$

$$
\begin{gathered}
1=\int_{0}^{L_{x}}\left|\psi_{n}(x)\right|^{2} d x=\int_{0}^{L_{x}} A^{2} \sin ^{2}\left(\frac{n \pi}{L_{x}} x\right) d x=A^{2} \int_{0}^{L_{x}} \frac{1-\cos \left(\frac{2 n \pi x}{L_{x}}\right)}{2} d x=A^{2} \frac{L_{x}}{2} \\
\therefore \psi_{n}(x)=\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right), \begin{array}{c}
n=1,2,3, \ldots \\
0<x<L_{x}
\end{array}
\end{gathered}
$$

(Step 7) Plug the wave function back into the Schrödinger equation

$$
\begin{array}{r}
\psi_{n}(x)=\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right) \longrightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x) \\
\frac{\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{L_{x}{ }^{2}}
\end{array}
$$

$$
\begin{aligned}
\psi_{n}(x) & =\sqrt{\frac{2}{L_{x}}} \sin \left(\frac{n \pi}{L_{x}} x\right) \\
E_{n} & =\frac{\hbar^{2} \pi^{2}}{2 m L_{x}^{2}} n^{2} \\
n & =1,2,3, \ldots, \quad 0<x<L_{x}
\end{aligned}
$$

Discrete Energy Levels!

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

\%

- Quantum world \rightarrow Macroscopic world
" What will happen with the discretized energy levels if we increase the length of the box?

- Energy level spacing goes smaller and smaller as physical dimension increases.
- In macroscopic world, where the energy spacing is too small to resolve, we see continuum of energy values.
- Therefore, the quantum phenomena is only observed in nanoscale environment.

Presentation Outline

- Time Independent Schroedinger Equation
- Analytical solutions of Toy Problems
" (Almost) Free Electrons
" Tightly bound electrons - infinite potential well
» Electrons in a finite potential well
" Tunneling through a single barrier
- Numerical Solutions to Toy Problems
" Tunneling through a double barrier structure
» Tunneling through N barriers
- Additional notes
" Discretizing Schroedinger's equation for numerical implementations
Reference: Vol. 6, Ch. 2 (pages 29-45)
- piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt

