

တိုင် ဂင္ဂဂ ကားHularg Outline - le	cture 1
Course information	
 Motivation for the course 	
Current flow in semiconductors	
Types of material systems	
Classification of crystals	
» Bravais Lattices	
» Packing Densities	
» Common crystals - Non-primitive cells	
✓NaCl, GaAs, CdS	
» Surfaces	
• Reference: Vol. 6, Ch. 1	
 Helpful software: Crystal Viewer in ABACUS tool at nanoh 	ub.org
FURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam	12

တိုင်ာ က CCA (3) Bohr Atom (continued)
$r_{\mathbf{n}} = \frac{4\pi\varepsilon_0(\mathbf{n}\hbar)^2}{m_0 q^2}$ K.E. $= \frac{1}{2}m_0 v^2 = \frac{1}{2}(q^2/4\pi\varepsilon_0 r_{\mathbf{n}})$
P.E. = $-q^2/4\pi\varepsilon_0 r_n$ (P.E. set = 0 at $r = \infty$)
$E_{\mathbf{n}} = \text{K.E.} + \text{P.E.} = -\frac{1}{2} \left(q^2 / 4\pi \varepsilon_0 r_{\mathbf{n}} \right)$
$E_{\mathbf{n}} = -\frac{m_0 q^4}{2(4\pi\varepsilon_0 \mathbf{n}\hbar)^2} = -\frac{13.6}{\mathbf{n}^2} \mathrm{eV} \qquad E_{m,n} = const \times \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

E =
$$\sqrt{m_0^2 c^4 + p^2 c^2} \approx m_0 c^2 [1 + p^2 c^2 / 2m_0^2 c^4 + ...]$$

 $E - m_0 c^2 = V + (p^2 / 2m_0)$
 $hf = \hbar \omega = V + (\hbar^2 k^2 / 2m_0)$

$$\frac{d^2\psi}{dx^2} + \frac{2m_0}{\hbar^2}(E-U)\psi = 0$$

If E >U, then
$$k = \frac{\sqrt{2m_0[E-U]}}{\hbar} \qquad \frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad \psi(x) = A\sin(kx) + B\cos(kx) = A_{+}e^{ikx} + A_{-}e^{-ikx}$$

If U>E, then
$$\alpha = \frac{\sqrt{2m_0[U-E]}}{\hbar} \qquad \frac{d^2\psi}{dx^2} - \alpha^2\psi = 0 \qquad \psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$$

orto nenetuliers Prese	entation Outline
 Time Independent Schroedinger Equation Analytical solutions of Toy Problems (Almost) Free Electrons Tightly bound electrons – infinite potential well Electrons in a finite potential well Tunneling through a single barrier Numerical Solutions to Toy Problems Tunneling through a double barrier structure Tunneling through N barriers Additional notes Discretizing Schroedinger's equation for numerical implet Reference: Vol. 6, Ch. 2 (pages 29-45) piece-wise-constant-potential-barrier tool http://nanohub.org/tools/pcpbt 	ementations
PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam	

