

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky		Diode i No externa	n Equilibrium. al voltage applied)		
BJT/HBT					
MOS					

	Equilibriu m	DC	Small signal	Large Signal	Circuit s
Diode				-	
Schottk y			Diode in Nor (External DC v		
BJT/HB T					
MOS					

DescriptionBand Diagram with Applied Bias...
$$\nabla \bullet D = q(p - n + N_D^+ - N_A^-)$$
Band diagram (this segment) $\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \bullet \mathbf{J}_N - r_N + g_N$ $\mathbf{J}_N = qn\mu_N E + qD_N \nabla n$ $\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \bullet \mathbf{J}_P - r_P + g_P$ Next segment / lecture ... $\mathbf{J}_P = qp\mu_P E - qD_P \nabla p$ \mathbf{V}

	Equilibrium	DC	Small signal	Large Signal	Circuits
Diode					
Schottky			Diode in No (External DC)		
BJT/HBT					
MOSFET					

