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Outline
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1) High Field Mobility effects 

2) Measurement of mobility

3) Hall Effect for determining carrier concentration

4) Physics of diffusion

5) Conclusions

REF: ADF, Chapter 5, pp. 190-202
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Mobility at High Fields? 

3
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What causes velocity 
saturation at high fields?

Where does all the mobility formula
in device simulator come from?
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Velocity Saturation in Si/Ge
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Velocity Overshoot & Inter-valley Transfer

5

What type of scattering would you need for inter-valley transfer?

Smaller 
m* 

Larger 
m* 
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Outline
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1) High Field Mobility effects 

2) Measurement of mobility

3) Hall Effect for determining carrier concentration

4) Physics of diffusion

5) Conclusions

REF: ADF, Chapter 5, pp. 190-202
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Problem of mobility measurement – unknown 
doping concentration

7

J

V

Four-Probe Measurement1 measures 
voltage of device without measuring drop 

in current carrying wires

1 -http://en.wikipedia.org/wiki/Four-terminal_sensing

Can we find out the doping concentration 
and type by an electrical measurement 

without any knowledge of how the sample 
was prepared?
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Problem of mobility measurement – unknown 
doping concentration
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Four-Probe Measurement1 measures 
voltage of device without measuring drop 

in current carrying wires

1 -http://en.wikipedia.org/wiki/Four-terminal_sensing

(in the low voltage 
limit where field-
voltage curve is 

linear)
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Outline
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1) High Field Mobility effects 

2) Measurement of mobility

3) Hall Effect for determining carrier concentration

4) Physics of diffusion

5) Conclusions

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Trivia - FYI
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• Discovered in 1879 by Edwin Herbert Hall 
while he was working on his doctoral 
degree at Johns Hopkins University in 
Baltimore, Maryland.

• Done 18 years before the electron was 
discovered.

• 4 Nobel Prizes associated directly with it.

• Read the original article (On a New Action 
of the Magnet on Electric Currents) at 
http://www.stenomuseet.dk/skoletj/elmag/kil
de9.html for a fascinating account of the 
discovery of the effect.

http://en.wikipedia.org/wiki/Hall_effect and
http://en.wikipedia.org/wiki/Edwin_Hall
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Set up for Hall Measurement

11

UIC system: 4-300K, 0-1.5 T
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Force acting on a charged particle in a magnetic 
field

• Applying a magnetic field one 
‘pushes’ carriers towards one face

• This induces a voltage across the two 
faces perpendicular to current flow.

• We will relate this voltage to the 
current and magnetic field and 
deduce the density of carriers.
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Drude Model for electrons *
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Weak B field …

* τ τ= − − ×υ Bm q qEυυυυ

* Same model works for holes, but with +q instead of -q

Simple classical Newton’s law 
expression

m – effective mass
v – drift velocity w/ scattering
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Drude Model & Hall Effect …

13
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Hall Resistance
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In the limit of  small B

Jx is measured, Bz is 
known, Vh is measured so 
Ey is known

~0, since voltmeters have a very large 
internal resistance so very little current 

flows through
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Hall Resistance

15
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In the limit of  small B

Jx is measured, Bz is 
known, Vh is measured so 
Ey is known

~0, since voltmeters have a very large 
internal resistance so very little current 

flows through

By a simple electrical measurement, we now know the 
concentration of electrons in the sample. From the 

intrinsic concentration of carriers in the semiconductor 
and temperature we can deduce the doping 

concentration in the sample
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Hall Resistance
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In the limit of  small B

Jx is measured, Bz is 
known, Vh is measured so 
Ey is known

~0, since voltmeters have a very large 
internal resistance so very little current 

flows through

Why Bz set to zero in one eq and not the other?
=> analytical simplicity.  

The system is also explicitly solvable in terms of Bz^2 and 
Ey..  Once Bz^z/Ey is small compared to 1/qn then one can 

neglect higher orders and come to the same result
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Temperature-dependent Concentration

17
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Outline
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1) High Field Mobility effects 

2) Measurement of mobility

3) Hall Effect for determining carrier concentration

4) Physics of diffusion

5) Conclusions
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Now the Diffusion term…

19
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Diffusion Flux …

20
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xAssuming independent 
random motion - on average, 
half of the electrons (at each 
x) will move to the left, half to 
the right �NET movement 
of electrons to left i.e. 
against the gradient. 
Opposite sign for holes.
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Diffusion Flux …
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l
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υ= ≡dp dp
q q

dx

l
D

dx

xAssuming independent 
random motion - on average, 
half of the electrons (at each 
x) will move to the left, half to 
the right �NET movement 
of electrons to left i.e. 
against the gradient. 
Opposite sign for holes.

This looks like a completely classical derivation.

Where is the Quantum Mechanics?

Quantum Mechanics is in the Diffusion coefficient and the Drift Velocity.

⇒Determines the available states

⇒Determines the capability to carry current

Scattering is built in here!   Interactions of many, many, many electrons 
and he surrounding. 

Without scattering one could not explain the equal partitioning into 2 
directions!
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Einstein Relationship …

22
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Einstein Relationship …

23
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… because scattering dominates both phenomena

The derivation is based on the basic notion that carriers at non-zero 
temperature (Kelvin) have an additional thermal energy, which equals kT/2 
per degree of freedom. It is the thermal energy, which drives the diffusion 
process. At T = 0 K there is no diffusion.

The reader should recognize that the random nature of the thermal energy 
would normally require a statistical treatment of the carriers. Instead we 
will use average values to describe the process. Such approach is justified 
on the basis that a more elaborate statistical approach yields the same 
results. To further simplify the derivation, we will derive the diffusion 
current for a one-dimensional semiconductor in which carriers can only 
move along one direction.

We now introduce the average values of the variables of interest, namely 
the thermal velocity, vth, the collision time, tc, and the mean free path, l. 
The thermal velocity is the average velocity of the carriers going in the 
positive or negative direction. The collision time is the time during which 
carriers will move with the same velocity before a collision occurs with an 
atom or with another carrier. The mean free path is the average length a 
carrier will travel between collisions. 

http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm 
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An alternate derivation

24

Figures and derivation from 
http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm#fig2_7_8

RMS velocity of 
carriers is decided 
by the average 
mean free path and 
average scattering 
time

Carriers that arrive at x=0 do so by travelling one mean free 
path from right to left or vice versa.

Net current from left to right (at x=0) = charge on carrier*net 
flux of carriers from left to right 

ν th = l

τ
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Derivation for electron diffusion current

25

Electron flux at x=0 from left to right

The factor half appears because the other half at x=-l travels 
towards the left

φn,left→right = 1

2
ν thn(x = −l)

Electron flux at x=0 from right to left

φn,right→left = 1
2

ν thn(x = l)

Net Flux

φn = φn,left→right −φn,right→left = 1

2
υth[n(x = −l)− n(x = l)]

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation continued

26

φn = lυth

[n(x = −l)− n(x = l)]
2l

If the mean free path is small enough, then we can write this 
as

φn = −lυth

dn

dx
The negative sign arises because we take the gradient is 
usually measured for increasing values of x. The current 
density is then given by.

Jn = −qφn = qlυth

dn

dx
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For holes, we repeat the derivation and find…

27

J p = qφp = −qlholesυth,holes

dp

dx

Lump together the second and third terms to form a ‘diffusion 
constant’

Jp = −qDp

dp

dx
Jn = qDn

dn

dx
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For thermally distributed carriers…

28

1

2
m*υ2

th = kBT

2

Equipartition theorem states 
that in equilibrium each 
carrier has thermal energy of 
kT/2 per degree of freedom. 

Our derivation is in one 
dimension� one degree of 
freedom

Use this to get a new insight into the relation between 
drift and diffusion 

http://en.wikipedia.org/wiki/Equipartition_theorem#Derivations
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Alternate way to obtain the diffusion constants

29

D = lυth = τυ2
th = qτ

m*

m*υ 2
th

q
= µ kBT

q

D

µ
= kBT

q

Dn

µn

=
Dp

µp

= kBT

q

Einstein relations valid 
for electrons and 
holes AT 
EQULIBRIUM

The equation shows how thermal quantities governing 
diffusion can be related to those governing drift (mobility 
depends on the effective mass which describes motion 
of carriers in the presence of a field and scatterers )
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An alternate derivation of Einstein’s relationship
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Conclusion

31

1) Measurement of mobility and carrier concentration is 

particularly important for analysis of semiconductor 

devices. 

2) Drift, diffusion, and recombination-generation 

constitute the elemental processes in semiconductor 

device physics.

3) We will put the pieces together in the next class. 
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ECE606: Solid State Devices
Lecture (from18)

Continuity Equations

Gerhard Klimeck
gekco@purdue.edu



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline
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1) Continuity Equation

2) Example problems

3) Conclusion

Ref. Advanced Semiconductor Fundamentals , pp. 205-210
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Now the Continuity Equations …

34

1∂ = − ∇ • − +
∂

JP P P

p
r g

t q

( )+ −∇ • = − + −D AD q p n N N

µ= − ∇J P P Pqp E qD p

1
N N N

n
r g

t q

∂ = ∇ • − +
∂

J

µ= + ∇J N N Nqn E qD n

These equations have been state of the art in device 
modeling until ‘recently’ (10-15 years ago…)

Continuity eqn. for electrons

Continuity eqn. for holes

Poisson equation
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Some critical remarks about these equations

35

I

V

• Continuity equations are always valid (regardless of the 
detailed physical model describing the device) because 
they describe a conservation law.

• Poisson equation as given does not account for explicit 
electron-electron repulsion. Might need to be modified for 
strongly correlated systems.

• Drift and Diffusion equations get modified when devices are 
so small that essentially no scattering takes place within 
the device.

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Continuity Equation prequel:  A Good Analogy

36

Rate of increase of
water level in lake = (in flow - outflow) + rain - evaporation

Wabash
River

1∂ = ∇ • + −
∂ N Nn

n
J

t
g r

q
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Now the Continuity Equations for electrons…

Ng

( )J x

( )J x dx+

Nr

n

∆x A=1

• Consider an arbitrarily shaped 
semiconductor with contacts 
that pump in current.

• Divide this arbitrary 
semiconductor into small cubic 
boxes of cross sectional area 
‘A’ and length ∆x.

• Boxes are large enough that 
concepts like effective mass, 
mobility etc. are valid inside 
these boxes.

• Electrons coming in are given 
by  J(x), going out� J(x+∆x)

• Total number of electrons per 
cm3 �n

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Now the Continuity Equations …

38

( )J x

( )J x dx+

Ng

Nr

n

∆x A=1
• gN-> generation rate in (per 

cm3 per sec) from external 
processes such as light.

• rN-> recombination rate in 
(per cm3 per sec) in the 
central box.

• We wish to relate all of these factors that affect the concentration of 
carriers in the central box.

• Our strategy (remember the analogy)– The rate of change of number of 
electrons INSIDE the central box should be equal to
• No. of electrons coming in MINUS No. of electrons going out per sec 

(governed by current density J(x) and J(x+∆x)) PLUS
• No. of electrons getting generated from external processes per sec  

(governed by generation rate gN) MINUS
• No. of electrons lost by recombination per sec (governed by 

recombination rate rN)
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Let’s just write the equations down…

39

( ) ( )n n
N N

n J x J x dx
g r

t q x

∂ − += + −
∂ − ∆

( ) )( ()∂ × ∆ × × − ×=
∂ −

+n nJ xA x n

t

xA dxA J

q

1
n N NJ g r

q
= ∇ • + −

+ × ∆ − × ∆N NA Ag rx x

( )J x

( )J x d x+

Ng

Nr

n

∆x A=1
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Continuity Equations for Electron/Holes

40

1
n N N

n
J g r

t q

∂ = ∇ • + −
∂

1∂ = − ∇ • + −
∂ P P P

p
J g r

t q

( )J x

( )J x dx+

Ng

n

Nr

p

( )pJ x

( )pJ x dx+

rp

gp

Usually generation and 
recombination rates for electrons and 
holes are the same since the same 
processes create/destroy an 
electron/hole



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Equations in place, learning to solve them…

41

1∂ −= ∇ • − +
∂

JP P P

p
r g

t q

( )+ −∇ • = − + −D AE q p n N N

P P Pqp E qD pµ= − ∇J

1
N N N

n
r g

t q

∂ = ∇ • − +
∂

J

J µ= + ∇N N Nqn E qD n

Two methods of solution:

Numerical and Analytical

I

V
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Analytical Solutions

42

( )+ −∇ • = − + −D AD q p n N N

1∂ −= ∇ • − +
∂

JP P P

p
r g

t q

P P Pqp E qD pµ= − ∇J

1
N N N

n
r g

t q

∂ = ∇ • − +
∂

J

J µ= + ∇N N Nqn E qD n

Band-diagram

Diffusion approximation,
Minority carrier transport,

Ambipolar transport
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Outline
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1) Continuity Equation

2) Example problems

3) Conclusion
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Consider a complicated real device example

44

x

1 2 3

Unpassivated
surface

Metal contact

� Acceptor doped

� Light turned on in the middle section. 

� The right region is full of mid-gap traps because of dangling bonds due 

to un-passivated surface.

� Interface traps at the end of the right region (That’s where the dangling 

bonds are…)

� The left region is trap free.

� The left/right  regions contacted by metal electrode. 
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Recall: Analytical Solution of Schrodinger 
Equation

45

( ) 0

( ) 0

x

x

ψ
ψ

= −∞ =
= +∞ =

d 2ψ
dx2

+ k2ψ = 0

B B

B B

x x x x

x x x x

d d

dx dx

ψ ψ

ψ ψ

− +

− +

= =

= =

=

=

1) 
2N unknowns 
for N regions

2) Reduces 2 unknowns

3)
Set 2N-2  equations for 
2N-2 unknowns (for continuous U)

Det(coefficient matix)=0
And find E by graphical 
or numerical solution

4) 2
( , ) 1x E dxψ

∞

−∞
=∫5)

for wave function
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Recall: Bound-levels in Finite well

46

( ) 0

( ) 0

x

x

ψ
ψ

= −∞ =
= +∞ =

U(x)

E

2) Boundary Conditions …

0 a

sin cosA kx B kxψ = +

x xMe Ceα αψ − ++=
x xDe Neα αψ − ++=

1)



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Analogously, we solve for our device

47

Solve the equations in different regions independently.

Bring them together by applying boundary conditions.
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Region 2: Transient, Uniform Illumination, 
Uniform doping

48

1
N N N

n
r g

t q

∂ = ∇ • − +
∂

J

2

J µ= + ∇N N Nqn E qD n

(uniform)

0( )

n

n n n
G

t τ
∂ + ∆ ∆= − +

∂ Acceptor doped

1∂ −= ∇ • − +
∂

J p P p

p
r g

t q
µ= − ∇J p p Pqp E qD p

(uniform)

0( )

τ
∂ + ∆ ∆= − +

∂ p

p p p
G

t
Majority carrier

( ) ( )0 0 0+ − + −∇ • = − + − = + ∆− − + − =∆D A D AD q p n N N q p n N Npn

Recall Shockley-
Read-Hall

Electric field still zero because 
new carriers balance
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Example: Transient, Uniform Illumination, Uniform 
doping, No applied electric field

49

2

( )

n

n n
G

t

∂ ∆ ∆= − +
∂ τ

( , ) ntn x t A Be−∆ = + τ

( )( , ) 1 nt
nn x t G e ττ −∆ = −

Acceptor doped

0, ( ,0) 0

, ( , ) n

t n x A B

t n x G A

= ∆ = ⇒ = −
→ ∞ ∆ ∞ = =τ

time

No carriers yet generated…

Steady state, no change in 
carriers with time…
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Region 1: One sided Minority Diffusion at steady state

50

∂n
∂t

= 0(steady-state)

rN = 0(trap free)

g
N

= 0(nogeneration)

1

E = 0

D
N

dn
dx

≠ 0 (due to insertion of electrons from central region)

2

2
0 = N

d n
D

dx

Steady state
Acceptor doped

Trap-free
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Example: One sided Minority Diffusion
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x = a , ∆n (x ' = a ) = 0⇒C = −Da

(Metal has high electron density as compared to semiconductor)

'
( , ) ( 0 ') 1

 ∆ = ∆ = − 
 

x
n x t n x

a

2

2
0 N

d n
D

dx
=

( , ) 'n x t C Dx∆ = +

x’

a

Metal contact

x = 0', ∆n (x ' = 0')=C

Just substitute x=0 in above eqn.

0x’

υ= m mJ q n

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Region 3: Steady state Minority Diffusion with 
recombination
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2
0

2

( )
0

τ
+ ∆ − ∆=

n
ND

n

dx

nd n

3

Steady state
Acceptor doped

Flux
2

2
0

τ
∆= ∆−N

n

d n

d

n

x
D

Trap-filled

∂n
∂t

= 0(steady-state)

r
N

≠ 0(not trap free)

g N = 0(nogeneration)

E = 0

D
N

dn
dx

≠ 0 (due to insertion of electrons from central region)
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Diffusion with Recombination …
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( , ) n nx L x Ln x t Ee Fe−∆ = +

2

2
0

τ
∆ ∆− =N

n

d n n
D

dx

3

2⇒ = − nb LF Ee

x

b

2
2

(0)
( , ) ( )

(1 )
−∆∆ = −

−
n n n

n

x L b L x L
b L

n
n x t e e e

e

∆n
, ( ) 0= ∆ = =x b n x b

0, ( 0) ( 0)= ∆ = = + = ∆ =x n x E F n x

0 X

Metal contact
Functionally 
similar to 
Schrodinger eqn.
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Combining them all ….
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1 ( 0)
'

( ') 1∆  =∆ = − 
 

x

a
nx xn

1 2 3
22

2

(0

( )

0 ')( )

τ∆ = =
∆ = ∆

n

n n

n x G

2
2

(0 ')
( ) ( )

(1 )
−∆ = −

−
∆

n n n

n

x L b L x L
b L

n x e e e
n

e

'
1n

x
G

a
 = − 
 

τ

2

2

( )

(1 )

n n n

n

x L b L x L
n

b L

G e e e

e

−−=
−

τ

Match boundary condition

Calculating current N N N

dn
qn E qD

dx
µ= +J

∆n

b0x’ 0’
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Conclusion
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1) Continuity Equations form the basis of analysis 

of all the devices we will study in this course. 

2) Full numerical solution of the equations are 

possible and many commercial software are 

available to do so.

3) Analytical solutions however provide a great deal 

of insight into the key physical mechanism 

involved in the operation of a device. 


