WEEK 3

Find names of parts supplied by supplier S1
(Book Notation)

✧ (using JOIN)

- SP JOIN P WHERE S# = 'S1' {PNAME}

- (SP WHERE S# = 'S1') JOIN P {PNAME}

✧ (using TIMES)

- ((SP WHERE S# = 'S1') TIMES (P {P#, PNAME}))
 WHERE SP.P# = P.P#) {PNAME}
Find names of parts supplied S1 (Algebraic operators)

- (using JOIN)
 - $\pi_{PNAME} (\sigma_{S# = 'S1'} (S \bowtie SP))$
 - $\pi_{PNAME} (\sigma_{S# = 'S1'} (SP) \bowtie P)$

- (using TIMES)
 - $\rho (\text{Newtable (SP.P# --> A, P.P# --> B)} \sigma_{S# = 'S1'} (SP) \times \pi_{PNAME} (\sigma_{A = B} \text{Newtable}))$

Find names of suppliers supplying part P2

- $\pi_{SNAME} (\sigma_{P# = 'P2'} (S \bowtie SP))$
- $\pi_{SNAME} (S \bowtie \sigma_{P# = 'P2'} (SP))$

- Book Notation:
 - $\text{((SP JOIN S) WHERE P# = P#('P2')) \{ SNAME \}}$
 - A more efficient implementation
 - $\text{((SP WHERE P# = P#('P2')) JOIN S) \{ SNAME \}}$
Find names of suppliers supplying at least one red part

- $\pi_{\text{SNAME}}(\sigma_{\text{color} = 'RED'}(P \bowtie SP \bowtie S))$
- A more efficient solution

$\pi_{\text{SNAME}}((\pi_{\text{P#}}(\sigma_{\text{color} = 'RED'}(P) \bowtie SP) \bowtie S))$

- A query optimizer can find this solution given the first solution!

- Book Notation (first solution):
 - $(((P \text{ WHERE COLOR} = \text{COLOR (} 'RED' \text{)) JOIN SP }) \{ S\# \} \text{ JOIN S }) \{ \text{SNAME} \}$

Understanding search and implementing relational algebraic queries

- Queries involving all semantics
- Queries involving exclusion type of search (do not etc.)

Use divide and set-theoretic operators
Find names of suppliers supplying all parts

- $\pi_{SNAME}((\pi_{S#,P#}(SP) \div \pi_{P#}(P)) \Join S)$

- **Book Notation:**
 - $(S \{S\#\} \text{DIVIDE BY} P \{P\#\} \PER SP \{S#, P\#\})$
 $\JOIN S \{SNAME\}$

Find supplier numbers for suppliers who supply at least all those parts supplied by supplier S2.

- $\pi_{S#,P#}(SP) / \pi_{P#}(\sigma_{S# = 'S2'}(SP))$

- **Book Notation:**
 - $S \{S\#\} \text{DIVIDE BY} (SP \WHERE S# = 'S2') \{P\#\}$
 $\PER SP \{S#, P\#\}$
Find supplier numbers for all pairs of suppliers that are co-located (i.e. located in the same city)

- \((S \text{ RENAME } S\# \text{ AS } SA)\{SA, \text{CITY}\} \text{ JOIN } (S \text{ RENAME } S\# \text{ AS } SB)\{SB, \text{CITY}\}) \text{ WHERE } SA < SB \{SA, SB\} \)

Find supplier names who do not supply part P2

- Is the following query correct?

- \((S\{S\#, \text{SNAME}\} \text{ JOIN } (SP \text{ WHERE P\# !='P2'}) \{\text{SNAME}\}) \)
Find **PNAME** that does not come in ‘Red’ color.

- Is the following query correct?

- \(P \ 	ext{WHERE} \ COLOR \neq \ ‘Red’ \ \{\text{PNAME}\} \)

Find **SNAMES** who supply red or green parts

- Can identify all red or green parts, then find supplier names who supply one of these parts:
 - \(\rho (\text{TempP},(\sigma_{\text{COLOR} = ‘RED’ \lor \text{COLOR} = ‘GREEN’}(P))) \)
 - \(\pi_{\text{SNAME}} (\text{TempP} \bowtie \text{SP} \bowtie \text{S}) \)

- Can also define TempP using union! (How?)

- What happens if \(\lor \) is replaced by \(\land \) in this query?
Find Snames who supply both red and green parts

- Previous approach won’t work! Must identify suppliers who supply red parts, supplier who supply green parts, then find the intersection

- $\rho (\text{Tempred}, \pi_{S\#} (\sigma_{\text{COLOR} = \text{RED}} (P \Join SP)))$

- $\rho (\text{Tempgreen}, \pi_{S\#} (\sigma_{\text{COLOR} = \text{GREEN}} (P \Join SP)))$

- $\pi_{\text{SNAME}} ((\text{Tempred} \cap \text{Tempgreen}) \Join 1 \ S)$

Find S# who have office both in LA and Chicago.

- Is the following query correct?

- S WHERE CITY = ‘LA’ AND CITY = ‘CHICAGO’ {S#}
Find S# who have offices in at least two cities.

Other Operators (Aggregate)

- Count
- Average
- Sum
- Max
- Min
Summary

- **Unary operators:** \(\sigma\), \(\pi\)

- **Set operators:** \(U\), \(\cap\), \(\times\), \(-\), \(/\)

- **Aggregate operators:** Count, Average, Sum, Max, Min