Database Design and Normalization

Chapter 10

(Week 11)
Computing Closure F^+

Example: List all FDs with:
- a single attribute on left
- two attributes on left
- three attributes on left

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>2</td>
<td>a1</td>
<td>b1</td>
<td>c2</td>
<td>d2</td>
</tr>
<tr>
<td>3</td>
<td>a2</td>
<td>b1</td>
<td>c1</td>
<td>d3</td>
</tr>
<tr>
<td>4</td>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d4</td>
</tr>
</tbody>
</table>
Computing Closure F^+

Example: Let $F = \{ A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow G, G \rightarrow H \}$

How many Fds in F^+ and how to find them?
Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD \(X \rightarrow Y \) is in the closure of a set of FDs \(F \). An efficient check:
 - Compute attribute closure of \(X \) (denoted \(X^+ \)) wrt \(F \):
 - Set of all attributes \(A \) such that \(X \rightarrow A \) is in \(F^+ \)
 - There is a linear time algorithm to compute this.
 - Check if \(Y \) is in \(X^+ \)
- Does \(F = \{ A \rightarrow B, \ B \rightarrow C, \ C \rightarrow D \rightarrow E \} \) imply \(A \rightarrow E \)?
 - i.e., is \(A \rightarrow E \) in the closure \(F^+ \)? Equivalently, is \(E \) in \(A^+ \)?
Computing Closure (see algorithm in section 10.5)

Algorithm rule: If $X \rightarrow YZ$ and $Z \rightarrow W$ then $X \rightarrow YZW$

Example: $A \rightarrow B$, $A \rightarrow GC$

$GD \rightarrow F$

$A \rightarrow ABGC$

Example: $A \rightarrow B$, $A \rightarrow GC$, $GD \rightarrow FGB \rightarrow E$, $BC \rightarrow D$

Compute A^+

$A \rightarrow ACDFBGE$
Minimal Cover for a Set of FDs

- **Cover** G is a set of FDs covered by another set of FDs F of G can be derived from F, that is, $F^+ \supseteq G$

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.

- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$
Computing Minimal Cover

- **Step 1** From set F create an equivalent set H of FDs with only single attributes on the R.H.S.
- **Step 2** From H, successively remove individual FDs that are inessential in H. In other words, after removal, the new set remains equivalent to H.
- **Step 3** Now successively replace individual FDs with FDs that have a smaller number of attributes on the LHS, in a manner that does not change H^+. (You may need to repeat Step 2)
- **Step 4** From the remaining set of FDs, gather all FDs with equal left-hand sides and use the union rule to create an equivalent FDs where all left-hand sides are unique. (You may not get singleton on RHS)
Computing Minimal Cover

Example: \(ABD \rightarrow AC, \ C \rightarrow BE, \ AD \rightarrow BF, \ B \rightarrow E \)

Step 1: \(H = \{ ABD \rightarrow A, \ ABD \rightarrow C, \ C \rightarrow B, \ C \rightarrow E, \ AD \rightarrow B, \ AD \rightarrow F, \ B \rightarrow E \} \)

Step 2:
- \(ABD \rightarrow A \) is not essential.
- How about \(ABD \rightarrow C \)? It cannot be derived from other FDs using set closure rule.
- How about \(C \rightarrow B \)? Can it be implied by other FDs? Compute \(C^+ = \{ CE \} \). Since, \(C^* \) does not contain B, \(C \rightarrow B \) is essential.
- \(C \rightarrow E \) is inessential
- Compute \((AD)^+ = (ADF) \), so \(AD \rightarrow B \) is essential. How about \(AD \rightarrow F \)? No FD has F on left hand side. So this is essential.
- Also, \(B \rightarrow E \) is essential.

\(H = \{ ABD \rightarrow C, \ C \rightarrow B, \ C \rightarrow E, \ AD \rightarrow B, \ AD \rightarrow F, \ B \rightarrow E \} \)
Computing Minimal Cover

- **Step 3** Can we drop A in ABD \(\rightarrow\) C?

The new set

\[J = \{BD \rightarrow C, C \rightarrow B, C \rightarrow E, AD \rightarrow B, AD \rightarrow F, B \rightarrow E\} \]

Is \(J = H \)? Yes iff \((BD)^+\) under \(H \) = \(BD^+\) under \(J \).

- **Step 4**

\[H = \{AD \rightarrow C, C \rightarrow B, AD \rightarrow F, B \rightarrow E\} \]

- **Step 4**

\[H = \{AD \rightarrow CF, C \rightarrow B, B \rightarrow E\} \]
Computing Minimal Cover

Example: \(F = \{ AB \rightarrow C, \ C \rightarrow A, BC \rightarrow D, \ ACD \rightarrow B, \ D \rightarrow G, \ BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG \} \)

Minimal covers: \(H = \{ AB \rightarrow C, \ C \rightarrow A, BC \rightarrow D, \ CD \rightarrow B, \ D \rightarrow E, D \rightarrow G, \ BE \rightarrow C, CG \rightarrow D, CE \rightarrow G \} \)

\(H = \{ AB \rightarrow C, \ C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, \ BE \rightarrow C, CG \rightarrow B, CE \rightarrow G \} \)
Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, A BC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they’ll all have the same B value!
Normalization (Chapter 11)

Universe of relations (normalized and unnormalized)

* 1NF relations
* 2NF relations
* 3NF relations
* BCNF relations
* 4NF relations
* PJ/NF (5NF) relation
Moving Towards 3NF Form

Objective 3NF
R is in 3NF iff its non-key attributes (if any)

- are mutually independent i.e. no FD’s among them.
- Full dependence on the P. Key
1NF

FIRST

Sample tabulation of FIRST

<table>
<thead>
<tr>
<th>S#</th>
<th>Status</th>
<th>City</th>
<th>P#</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P1</td>
<td>300</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P2</td>
<td>200</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P3</td>
<td>400</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P4</td>
<td>200</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P5</td>
<td>100</td>
</tr>
<tr>
<td>S1</td>
<td>20</td>
<td>London</td>
<td>P6</td>
<td>100</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
<td>Paris</td>
<td>P1</td>
<td>300</td>
</tr>
<tr>
<td>S2</td>
<td>10</td>
<td>Paris</td>
<td>P2</td>
<td>400</td>
</tr>
<tr>
<td>S3</td>
<td>10</td>
<td>Paris</td>
<td>P2</td>
<td>200</td>
</tr>
<tr>
<td>S4</td>
<td>20</td>
<td>London</td>
<td>P2</td>
<td>200</td>
</tr>
<tr>
<td>S4</td>
<td>20</td>
<td>London</td>
<td>P4</td>
<td>300</td>
</tr>
<tr>
<td>S4</td>
<td>20</td>
<td>London</td>
<td>P5</td>
<td>400</td>
</tr>
</tbody>
</table>
A relation R is in 1NF iff all underlying simple domains contain atomic values.
Problems with 1NF Example

Insert: We cannot insert a supplier. Why?

Delete: Problem?

Update: Problem?
2N Form

Convert 1NF → 2NF (using Projection)
R is in 1NF. Must has a composite P.K.
Project into two relations R1 and R2

Def: R is in 2NF if it is 1NF and every non-key attribute is fully dependent on the P.K.
Procedure $1NF \rightarrow 2NF$

If \(R(A,B,C,D) \)

 \(P.Key \) \((A,B) \)

 with \(A \rightarrow D \)

Then generate \(R2 \) and \(R2 \) (lossless)

\(R1(A,D) \) \hspace{1cm} \(R2(A,B,C) \)

\(P.Key = A \) \hspace{1cm} \(P.Key = (A,B) \)

\(F.Key = (A) \) reference \(R1 \)