Digital Signal Processing I Session 17

Exam 2 Fall 1999 Live: 21 Oct. 1999

Cover Sheet

Test Duration: 75 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **four** problems. All work should be done in the blue books provided. Do **not** return this test sheet, just return the blue books.

Prob. No.	Topic of Problem	Points
1.	Digital Upsampling	35
2.	Digital Subbanding	25
3.	Multi-Stage Upsampling/Interpolation	20
4.	IIR Filter Design Via Bilinear Transform	20

Digital Signal Processing I Session 17

Problem 1. [35 points]

The analog signal $x_a(t)$ with CTFT $X_a(F)$ shown above is input to the system above, where $x[n] = x_a(n/F_s)$ with $F_s = 4W$, and

$$h_{LP}[n] = rac{\sin(rac{\pi}{2}n)}{rac{\pi}{2}n} rac{\cos(rac{\pi}{4}n)}{1 - rac{n^2}{4}}, \qquad -\infty < n < \infty,$$

such that $H_{LP}(\omega) = 2$ for $|\omega| \leq \frac{\pi}{4}$, $H_{LP}(\omega) = 0$ for $\frac{3\pi}{4} \leq |\omega| \leq \pi$, and $H_{LP}(\omega)$ has a cosine roll-off from 1 at $\omega_p = \frac{\pi}{4}$ to 0 at $\omega_s = \frac{3\pi}{4}$. Finally, the zero inserts may be mathematically described as

$$w[n] = \left\{ egin{array}{cc} x(rac{n}{2}), & n ext{ even} \ 0, & n ext{ odd} \end{array}
ight.$$

- (a) Plot the magnitude of the DTFT of the output y[n], $Y(\omega)$, over $-\pi < \omega < \pi$.
- (b) Given that

$$x[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n} \qquad -\infty < n < \infty,$$

provide an analytical expression for y[n] for $-\infty < n < \infty$ (similar to the expression for either x[n] above, for example.)

THIS PROBLEM IS CONTINUED ON THE NEXT PAGE.

- (c) The up-sampling by a factor of 2 in Figure 1 can be efficiently done via the block diagram in Figure 2 below.
 - (i) Provide an analytical expression for $h_0[n] = h_{LP}[2n]$ for $-\infty < n < \infty$. Simplify as much as possible.
 - (ii) Plot the magnitude of the DTFT of $h_0[n]$, $|H_0(\omega)|$, over $-\pi < \omega < \pi$.
 - (iii) Provide an analytical expression for the output $y_0[n]$ for $-\infty < n < \infty$. Is $y_0[n] = x[n]$? Explain why they are the same if you said "YES" or explain why they are not the same if you said "NO."
 - (iv) Describe an advantage of employing this lowpass filter, $h_{LP}[n]$, in the process of upsampling by a factor of 2.

Problem 2. [25 points] Let $w_a(t)$ be a continuous-time signal with a bandwidth of W, the same as the bandwidth of the signal $x_a(t)$ defined in Problem 1. The discrete-time signal $w[n] = w_a(n/F_s)$ is obtained by sampling the signal $w_a(t)$ at a rate $F_s = 4W$. We desire to frequency division multiplex x[n] and w[n]. To this end, z[n] is created as shown below.

where

$$h_{HP}[n] = (-1)^n h_{LP}[n] = (-1)^n \frac{\sin(\frac{\pi}{2}n)}{\frac{\pi}{2}n} \frac{\cos(\frac{\pi}{4}n)}{1 - \frac{n^2}{4}}, \qquad -\infty < n < \infty,$$

Finally, we create the sum signal

$$s[n] = y[n] + z[n]$$

where y[n] is the DT signal created in Problem 1.

- (a) Draw a block diagram of a system to recover w[n] from the sum signal s[n] = y[n] + z[n]. The recovery of w[n] must be done in a computationally efficient manner. You CANNOT use any decimators and you CANNOT use any modulators (multiplication by a cosine). Clearly specify all the quantities in your block diagram.
- (b) Draw a block diagram of a system to recover x[n], defined in Problem 1, from the sum signal s[n] = y[n] + z[n]. The same rules apply as those stated in part (a) above.

Problem 3. [20 points] The signal $x[n] = x_a(n/F_s)$ is obtained by sampling an analog signal $x_a(t)$ having a bandwidth of W = 20 KHz at a rate of $F_s = 50$ KHz. It is desired to increase the sampling rate by a factor of L = 16 to $F_{s_{new}} = 800$ KHz in two stages via the system below, where ideally $y[n] = x_a(n/16F_s)$

- (a) Determine the passband edge, ω_{p1} , and stopband edge, ω_{s1} , of the first lowpass filter.
- (b) Determine the passband edge, ω_{p2} , and stopband edge, ω_{s2} , of the second lowpass filter.

PROBLEM 4 IS ON THE NEXT PAGE.

Digital Signal Processing I Session 17

Exam 2 Fall 1999 Live: 21 Oct. 1999

Problem 4. [20 points]

An analog Butterworth filter of order N = 1 with a 3-dB cut-off at Ω_c rad/sec has the following transfer function (Laplace Transform):

$$H_a(s) = \frac{\Omega_c}{s + \Omega_c} \tag{1}$$

The goal is to use the bilinear transform technique to design a digital lowpass filter having a 3 dB cut-off at $\omega_c = \frac{\pi}{2} = 0.5\pi$ rads/sec.

(a) Use the bilinear transformation technique where s is replaced by

$$s = c \frac{z-1}{z+1} \tag{2}$$

to create the digital filter. You have freedom to pick the value of c but it must be real-valued and non-negative.

- (b) Determine the transfer function, H(z), of the digital filter obtained by applying the bilinear transform in (2) to the analog filter described by (1) with the value of Ω_c determined in part (a).
- (c) Is the resulting digital filter stable? Explain your answer.
- (d) Let $H(\omega)$ be the DTFT of the impulse response of the resulting digital filter. Plot $|H(\omega)|$ over $-\pi < \omega < \pi$ specifically pointing out the respective values at $\omega = 0$, $\omega = \pi/2$, and $\omega = \pi$.
- (e) Determine the difference equation for implementing the resulting digital lowpass filter.