Digital Signal Processing I Session 16

Exam 2
 Fall 1998
 Live: 20 Oct. 1998

Cover Sheet

Test Duration: 75 minutes.
Open Book but Closed Notes.
Calculators allowed.
This test contains four problems.
All work should be done in the blue books provided.
Do not return this test sheet, just return the blue books.

Prob. No. Topic of Problem

1. Digital Subbanding
2. Fractional Sampling Rate Conversion
3. Multi-Stage Upsampling/Interpolation
4. IIR Filter Design Via Bilinear Transform 30

Digital Signal Processing I Session 16

Fall 1998
Live: 20 Oct. 1998
Problem 1. [30 points]

The analog signals $x_{i a}(t)$ with CTFT $X_{i a}(F), i=1,2$, shown are input to the system above, where $x_{i}[n]=x_{i a}\left(n / F_{s}\right), h_{H P}[n]=(-1)^{n} h_{L P}[n]$, where

$$
h_{L P}[n]=\frac{\sin \left(\frac{\pi}{2} n\right)}{\frac{\pi}{2} n}, \quad-\infty<n<\infty
$$

and

$$
w_{i}[n]= \begin{cases}x_{i}\left(\frac{n}{2}\right), & n \text { even } \\ 0, & n \text { odd }\end{cases}
$$

(15 pts) Plot the magnitude of the DTFT of $z[n]$ over $-\pi<\omega<\pi$ showing as much detail as possible. Note that it is not necessary to do a lot of mathematical analysis to obtain your answer. If you know what the system is doing, very little analysis is needed to plot $Z(\omega)$.
(15 pts) Draw a block diagram of a system that recovers $x_{1}[n]$ and $x_{2}[n]$ individually from the composite signal $z[n]$ using only decimators and the ideal lowpass and highpass filters employed in the block diagram above. You do not need to worry about computational efficiency.

Digital Signal Processing I Session 16

Exam 2
 Fall 1998
 Live: 20 Oct. 1998

Problem 2. [20 points] The signal $x[n]=x_{a}\left(n / F_{s}\right)$ is obtained by sampling the signal $x_{a}(t)$ with spectrum

at a rate of $F_{s}=9 \mathrm{KHz}=9000 \mathrm{~Hz}$. The resulting DT signal $x[n]$ is input to the following system:

where $y[n]=v[3 n]$ and the impulse response for the ideal lowpass filter is $h[n]=\frac{\sin \left(\frac{\pi}{2} n\right)}{\frac{\pi}{2} n}$. Denoting the DTFT of the output $y[n]$ as $Y(\omega)$, plot $|Y(\omega)|$ over $-\pi<\omega<\pi$ showing as much detail as possible. Note that it is not necessary to do a lot of mathematical analysis to obtain your answer. If you know what the overall system is doing, very little mathematical analysis is needed to plot $Y(\omega)$ (be careful about aliasing, though).

Problem 3. [20 points] The signal $x[n]=x_{a}\left(n / F_{s}\right)$ is obtained by sampling an analog signal $x_{a}(t)$ having a bandwidth of $W=15 \mathrm{KHz}$ at a rate of $F_{s}=40 \mathrm{KHz}$. It is desired to increase the sampling rate by a factor of $L=4$ to $F_{s_{\text {new }}}=160 \mathrm{KHz}$ in two stages via the system below, where ideally $y[n]=x_{a}\left(n / 4 F_{s}\right)$

(a) Determine the passband edge, $\omega_{p 1}$, and stopband edge, $\omega_{s 1}$, of the first lowpass filter.
(b) Determine the passband edge, $\omega_{p 2}$, and stopband edge, $\omega_{s 2}$, of the second lowpass filter.

Digital Signal Processing I Session 16

Exam 2 Fall 1998
 Live: 20 Oct. 1998

Problem 4. [30 points]
An analog Butterworth filter of order $N=2$ with a $3-\mathrm{dB}$ cut-off at $\Omega_{c}=1 \mathrm{rad} / \mathrm{sec}$ has the following transfer function (Laplace Transform):

$$
\begin{equation*}
H_{a}(s)=\frac{1}{s^{2}+\sqrt{2} s+1} \tag{1}
\end{equation*}
$$

The goal is to use the bilinear transform technique to design a digital lowpass filter having a 3 dB cut-off at $\omega_{c}=\frac{2 \pi}{5}=0.4 \pi \mathrm{rads} / \mathrm{sec}$.
(a) Determine the constant c so that the bilinear transformation

$$
\begin{equation*}
s=c \frac{z-1}{z+1} \tag{2}
\end{equation*}
$$

maps $\Omega_{c}=1 \mathrm{~Hz}$ to $\omega_{c}=\frac{2 \pi}{5} \mathrm{rads} / \mathrm{sec}$ through the transformation $\Omega=c \tan \{\omega / 2\}$. Note: For this problem, you are required to approximate $\tan \left\{\frac{\pi}{5}\right\}$ as $\frac{1}{\sqrt{2}}$. That is, use the approximation:

$$
\tan \left\{\frac{\pi}{5}\right\} \approx \frac{1}{\sqrt{2}}
$$

(b) Determine the transfer function, $H(z)$, of the digital filter obtained by applying the bilinear transform in (2) to the analog filter described by (1) with the value of c determined in part (a). Simplify as much as possible.
(c) Determine the poles and zeros of the resulting digital filter, $H(z)$. Draw the pole-zero diagram. Is the resulting digital filter stable?
(d) Determine the difference equation for implementing the resulting digital lowpass filter.

