Digital Signal Processing I

Problem 1. [35 points]

The analog signal $x_{a}(t)$ with CTFT $X_{a}(F)$ shown is input to the system above, where $x(n)=x_{a}\left(n / F_{s}\right)$,

$$
\begin{gathered}
w(n)= \begin{cases}x\left(\frac{n}{2}\right), & n \text { even } \\
0, & n \text { odd }\end{cases} \\
h_{L P}(n)=\frac{\sin \left(\frac{\pi}{2} n\right)}{\pi n}, \quad-\infty<n<\infty,
\end{gathered}
$$

and $\tilde{h}_{L P}(n)$ is the Discrete-Time Hilbert Transform of $h(n)$. Note that $y(n)=w(n) * h(n)$, where $h(n)=h_{L P}(n)+j \tilde{h}_{L P}(n)$. (If necessary, see page 610 of the text for both a frequency and time-domain description of the DT Hilbert Transform.) Finally, $z(n)=e^{j \frac{\pi}{2} n} y(n)$.
(25 pts) Plot the magnitude of the respective DTFT's of $x(n), w(n), y(n), h(n)$, and $z(n)$ - five plots all together. In each case, plot the magnitude of the DTFT over $-\pi<\omega<\pi$ (NOT just $0<\omega<\pi$ since most of the sequences are complex-valued.) Show as much detail as possible.
(10 pts) Determine a closed-form expression (NO summation should appear in the final expression) for $\tilde{h}_{L P}(n)$, the Hilbert Transform of $h_{L P}(n)$, as a function of n. Simplify as much as possible.

Digital Signal Processing I Exam 230 Oct. 1995

Problem 2. [35 points]
Consider the following two $N=8$ point sequences:

$$
x(n)=\cos \left(\frac{\pi}{2} n\right)\{u(n)-u(n-8)\}
$$

and

$$
h(n)=.5^{n}\{u(n)-u(n-8)\},
$$

where $u(n)$ is the DT unit step function. Let $X_{8}(k)$ and $H_{8}(k)$ denote the respective $N=8$ point DFT's of $x(n)$ and $h(n)$.

$$
x(n) \underset{8}{\stackrel{D F T}{\longleftrightarrow}} X_{8}(k) \quad h(n) \underset{8}{\stackrel{D F T}{\longleftrightarrow}} H_{8}(k)
$$

(10 pts) Write a closed-form expression (NO summation in the final answer) for both $X_{8}(k)$ and $H_{8}(k)$, respectively (two answers), as a function of k. There's no need to do a lot of work here if you make use of either standard DFT pairs or standard DTFT pairs.
(15 pts) Let $y_{8}(n)$ denote the $N=8$ point inverse DFT of the product $Y_{8}(k)=X_{8}(k) H_{8}(k)$. Determine a closed-form expression (NO summation in final answer) for $y_{8}(n)$. Simplify as much as possible - there should be no $j=\sqrt{-1}$ in the final answer since $y_{8}(n)$ is real-valued for all n. (You can make the approximation $1-\frac{1}{2^{8}} \approx 1$.)
(10 pts) Is there any value of n for which $y_{8}(n)=y(n)$, where $y(n)$ is the linear convolution of $x(n)$ and $h(n)(y(n)=x(n) * h(n))$?? If yes, state which values of n does $y_{8}(n)=y(n)$. Explain your answer.

Problem 3. [10 points]

reconstructed signal

Consider reconstructing a signal from its samples by linearly interpolating between every two successive sample values (graphically, we draw a line between each pair of successive sample values.) From a theoretical point of view, the reconstruction process may be viewed in terms of the block diagram above. Plot the impulse response of the appropriate continuous time (CT) LTI filter, $h_{a}(t)$, in the diagram above that achieves this type of reconstruction.

Digital Signal Processing I Exam 230 Oct. 1995

Problem 4. [10 points]
A DT signal is obtained by sampling the CT signal $x_{a}(t)=e^{-a t} u(t)$ as $x(n)=x_{a}\left(n T_{s}\right)=$ $x_{a}\left(n / F_{s}\right)$. From class, we know that the DTFT of $x(n), X(\omega)$, and the CTFT of $x_{a}(t)$, $X_{a}(F)$, are related as $X(\omega)=F_{s} \sum_{k=-\infty}^{\infty} X_{a}\left(\frac{F_{s}}{2 \pi}(\omega+k 2 \pi)\right)$. Given the CTFT pair

$$
e^{-a t} u(t) \stackrel{C T F T}{\longleftrightarrow} \frac{1}{a+j 2 \pi F}
$$

it follows that,

$$
X(\omega)=F_{s} \sum_{k=-\infty}^{\infty} \frac{1}{a+j F_{s}(\omega+k 2 \pi)}=? ?
$$

Determine a closed-form expression (NO summation in final answer) for $X(\omega)$ in terms of a and F_{s}. (This problem requires very little work and was alluded to in class.)

Problem 5. [10 points]
Suppose we need to compute a $N=21$ point DFT. The direct approach would require $21^{2}=441$ complex multiplications. What would be the required number of complex multiplications if we employed a divide and conquer approach??

