Contents

Preface xvii

1 **Introduction** 1

1.1 **Signals, Systems, and Signal Processing** 2
 1.1.1 Basic Elements of a Digital Signal Processing System 4
 1.1.2 Advantages of Digital over Analog Signal Processing 5

1.2 **Classification of Signals** 6
 1.2.1 Multichannel and Multidimensional Signals 6
 1.2.2 Continuous-Time Versus Discrete-Time Signals 9
 1.2.3 Continuous-Valued Versus Discrete-Valued Signals 10
 1.2.4 Deterministic Versus Random Signals 11

1.3 **The Concept of Frequency in Continuous-Time and Discrete-Time Signals** 12
 1.3.1 Continuous-Time Sinusoidal Signals 12
 1.3.2 Discrete-Time Sinusoidal Signals 14
 1.3.3 Harmonically Related Complex Exponentials 17

1.4 **Analog-to-Digital and Digital-to-Analog Conversion** 19
 1.4.1 Sampling of Analog Signals 21
 1.4.2 The Sampling Theorem 26
 1.4.3 Quantization of Continuous-Amplitude Signals 31
 1.4.4 Quantization of Sinusoidal Signals 34
 1.4.5 Coding of Quantized Samples 35
 1.4.6 Digital-to-Analog Conversion 36
 1.4.7 Analysis of Digital Signals and Systems Versus Discrete-Time Signals and Systems 36

1.5 **Summary and References** 37

Problems 37
2 Discrete-Time Signals and Systems

2.1 Discrete-Time Signals
2.1.1 Some Elementary Discrete-Time Signals
2.1.2 Classification of Discrete-Time Signals
2.1.3 Simple Manipulations of Discrete-Time Signals

2.2 Discrete-Time Systems
2.2.1 Input–Output Description of Systems
2.2.2 Block Diagram Representation of Discrete-Time Systems
2.2.3 Classification of Discrete-Time Systems
2.2.4 Interconnection of Discrete-Time Systems

2.3 Analysis of Discrete-Time Linear Time-Invariant Systems
2.3.1 Techniques for the Analysis of Linear Systems
2.3.2 Resolution of a Discrete-Time Signal into Impulses
2.3.3 Response of LTI Systems to Arbitrary Inputs: The Convolution Sum
2.3.4 Properties of Convolution and the Interconnection of LTI Systems
2.3.5 Causal Linear Time-Invariant Systems
2.3.6 Stability of Linear Time-Invariant Systems
2.3.7 Systems with Finite-Duration and Infinite-Duration Impulse Response

2.4 Discrete-Time Systems Described by Difference Equations
2.4.1 Recursive and Nonrecursive Discrete-Time Systems
2.4.2 Linear Time-Invariant Systems Characterized by Constant-Coefficient Difference Equations
2.4.3 Solution of Linear Constant-Coefficient Difference Equations
2.4.4 The Impulse Response of a Linear Time-Invariant Recursive System

2.5 Implementation of Discrete-Time Systems
2.5.1 Structures for the Realization of Linear Time-Invariant Systems
2.5.2 Recursive and Nonrecursive Realizations of FIR Systems

2.6 Correlation of Discrete-Time Signals
2.6.1 Crosscorrelation and Autocorrelation Sequences
2.6.2 Properties of the Autocorrelation and Crosscorrelation Sequences
2.6.3 Correlation of Periodic Sequences
2.6.4 Input–Output Correlation Sequences

2.7 Summary and References

Problems
3 The z-Transform and Its Application to the Analysis of LTI Systems

3.1 The z-Transform
 - 3.1.1 The Direct z-Transform
 - 3.1.2 The Inverse z-Transform

3.2 Properties of the z-Transform

3.3 Rational z-Transforms
 - 3.3.1 Poles and Zeros
 - 3.3.2 Pole Location and Time-Domain Behavior for Causal Signals
 - 3.3.3 The System Function of a Linear Time-Invariant System

3.4 Inversion of the z-Transform
 - 3.4.1 The Inverse z-Transform by Contour Integration
 - 3.4.2 The Inverse z-Transform by Power Series Expansion
 - 3.4.3 The Inverse z-Transform by Partial-Fraction Expansion
 - 3.4.4 Decomposition of Rational z-Transforms

3.5 Analysis of Linear Time-Invariant Systems in the z-Domain
 - 3.5.1 Response of Systems with Rational System Functions
 - 3.5.2 Transient and Steady-State Responses
 - 3.5.3 Causality and Stability
 - 3.5.4 Pole-Zero Cancellations
 - 3.5.5 Multiple-Order Poles and Stability
 - 3.5.6 Stability of Second-Order Systems

3.6 The One-sided z-Transform
 - 3.6.1 Definition and Properties
 - 3.6.2 Solution of Difference Equations
 - 3.6.3 Response of Pole-Zero Systems with Nonzero Initial Conditions

3.7 Summary and References

Problems

4 Frequency Analysis of Signals

4.1 Frequency Analysis of Continuous-Time Signals
 - 4.1.1 The Fourier Series for Continuous-Time Periodic Signals
 - 4.1.2 Power Density Spectrum of Periodic Signals
 - 4.1.3 The Fourier Transform for Continuous-Time Aperiodic Signals
 - 4.1.4 Energy Density Spectrum of Aperiodic Signals
4.2 Frequency Analysis of Discrete-Time Signals
 4.2.1 The Fourier Series for Discrete-Time Periodic Signals 241
 4.2.2 Power Density Spectrum of Periodic Signals 245
 4.2.3 The Fourier Transform of Discrete-Time Aperiodic Signals 248
 4.2.4 Convergence of the Fourier Transform 251
 4.2.5 Energy Density Spectrum of Aperiodic Signals 254
 4.2.6 Relationship of the Fourier Transform to the z-Transform 259
 4.2.7 The Cepstrum 261
 4.2.8 The Fourier Transform of Signals with Poles on the Unit Circle 262
 4.2.9 Frequency-Domain Classification of Signals: The Concept of Bandwidth 265
 4.2.10 The Frequency Ranges of Some Natural Signals 267
4.3 Frequency-Domain and Time-Domain Signal Properties 268
4.4 Properties of the Fourier Transform for Discrete-Time Signals 271
 4.4.1 Symmetry Properties of the Fourier Transform 272
 4.4.2 Fourier Transform Theorems and Properties 279
4.5 Summary and References 291

Problems 292

5 Frequency-Domain Analysis of LTI Systems 300

5.1 Frequency-Domain Characteristics of Linear Time-Invariant Systems 300
 5.1.1 Response to Complex Exponential and Sinusoidal Signals: The Frequency Response Function 301
 5.1.2 Steady-State and Transient Response to Sinusoidal Input Signals 310
 5.1.3 Steady-State Response to Periodic Input Signals 311
 5.1.4 Response to Aperiodic Input Signals 312
5.2 Frequency Response of LTI Systems 314
 5.2.1 Frequency Response of a System with a Rational System Function 314
 5.2.2 Computation of the Frequency Response Function 317
5.3 Correlation Functions and Spectra at the Output of LTI Systems 321
 5.3.1 Input–Output Correlation Functions and Spectra 322
 5.3.2 Correlation Functions and Power Spectra for Random Input Signals 323
5.4 Linear Time-Invariant Systems as Frequency-Selective Filters 326
 5.4.1 Ideal Filter Characteristics 327
 5.4.2 Lowpass, Highpass, and Bandpass Filters 329
 5.4.3 Digital Resonators 335
 5.4.4 Notch Filters 339
 5.4.5 Comb Filters 341
6 Sampling and Reconstruction of Signals

6.1 Ideal Sampling and Reconstruction of Continuous-Time Signals

6.2 Discrete-Time Processing of Continuous-Time Signals

6.3 Analog-to-Digital and Digital-to-Analog Converters

6.4 Sampling and Reconstruction of Continuous-Time Bandpass Signals

6.5 Sampling of Discrete-Time Signals

6.6 Oversampling A/D and D/A Converters

6.7 Summary and References
7 The Discrete Fourier Transform: Its Properties and Applications

7.1 Frequency-Domain Sampling: The Discrete Fourier Transform 449
 7.1.1 Frequency-Domain Sampling and Reconstruction of Discrete-Time Signals 449
 7.1.2 The Discrete Fourier Transform (DFT) 454
 7.1.3 The DFT as a Linear Transformation 459
 7.1.4 Relationship of the DFT to Other Transforms 461

7.2 Properties of the DFT 464
 7.2.1 Periodicity, Linearity, and Symmetry Properties 465
 7.2.2 Multiplication of Two DFTs and Circular Convolution 471
 7.2.3 Additional DFT Properties 476

7.3 Linear Filtering Methods Based on the DFT 480
 7.3.1 Use of the DFT in Linear Filtering 481
 7.3.2 Filtering of Long Data Sequences 485

7.4 Frequency Analysis of Signals Using the DFT 488

7.5 The Discrete Cosine Transform 495
 7.5.1 Forward DCT 495
 7.5.2 Inverse DCT 497
 7.5.3 DCT as an Orthogonal Transform 498

7.6 Summary and References 501

Problems 502

8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

8.1 Efficient Computation of the DFT: FFT Algorithms 511
 8.1.1 Direct Computation of the DFT 512
 8.1.2 Divide-and-Conquer Approach to Computation of the DFT 513
 8.1.3 Radix-2 FFT Algorithms 519
 8.1.4 Radix-4 FFT Algorithms 527
 8.1.5 Split-Radix FFT Algorithms 532
 8.1.6 Implementation of FFT Algorithms 536

8.2 Applications of FFT Algorithms 538
 8.2.1 Efficient Computation of the DFT of Two Real Sequences 538
 8.2.2 Efficient Computation of the DFT of a 2N-Point Real Sequence 539
 8.2.3 Use of the FFT Algorithm in Linear Filtering and Correlation 540
9 Implementation of Discrete-Time Systems

9.1 Structures for the Realization of Discrete-Time Systems 563
9.2 Structures for FIR Systems 565
 9.2.1 Direct-Form Structure 566
 9.2.2 Cascade-Form Structures 567
 9.2.3 Frequency-Sampling Structures 569
 9.2.4 Lattice Structure 574
9.3 Structures for IIR Systems 582
 9.3.1 Direct-Form Structures 582
 9.3.2 Signal Flow Graphs and Transposed Structures 585
 9.3.3 Cascade-Form Structures 589
 9.3.4 Parallel-Form Structures 591
 9.3.5 Lattice and Lattice-Ladder Structures for IIR Systems 594
9.4 Representation of Numbers 601
 9.4.1 Fixed-Point Representation of Numbers 601
 9.4.2 Binary Floating-Point Representation of Numbers 605
 9.4.3 Errors Resulting from Rounding and Truncation 608
9.5 Quantization of Filter Coefficients 613
 9.5.1 Analysis of Sensitivity to Quantization of Filter Coefficients 613
 9.5.2 Quantization of Coefficients in FIR Filters 620
9.6 Round-Off Effects in Digital Filters 624
 9.6.1 Limit-Cycle Oscillations in Recursive Systems 624
 9.6.2 Scaling to Prevent Overflow 629
 9.6.3 Statistical Characterization of Quantization Effects in Fixed-Point Realizations of Digital Filters 631
9.7 Summary and References 640
 Problems 641
10 Design of Digital Filters 654

10.1 General Considerations 654
 10.1.1 Causality and Its Implications 655
 10.1.2 Characteristics of Practical Frequency-Selective Filters 659

10.2 Design of FIR Filters 660
 10.2.1 Symmetric and Antisymmetric FIR Filters 660
 10.2.2 Design of Linear-Phase FIR Filters Using Windows 664
 10.2.3 Design of Linear-Phase FIR Filters by the Frequency-Sampling Method 671
 10.2.4 Design of Optimum Equiripple Linear-Phase FIR Filters 678
 10.2.5 Design of FIR Differentiators 691
 10.2.6 Design of Hilbert Transformers 693
 10.2.7 Comparison of Design Methods for Linear-Phase FIR Filters 700

10.3 Design of IIR Filters From Analog Filters 701
 10.3.1 IIR Filter Design by Approximation of Derivatives 703
 10.3.2 IIR Filter Design by Impulse Invariance 707
 10.3.3 IIR Filter Design by the Bilinear Transformation 712
 10.3.4 Characteristics of Commonly Used Analog Filters 717
 10.3.5 Some Examples of Digital Filter Designs Based on the Bilinear Transformation 727

10.4 Frequency Transformations 730
 10.4.1 Frequency Transformations in the Analog Domain 730
 10.4.2 Frequency Transformations in the Digital Domain 732

10.5 Summary and References 734
 Problems 735

11 Multirate Digital Signal Processing 750

11.1 Introduction 751
11.2 Decimation by a Factor \(D \) 755
11.3 Interpolation by a Factor \(I \) 760
11.4 Sampling Rate Conversion by a Rational Factor \(I/D \) 762

11.5 Implementation of Sampling Rate Conversion 766
 11.5.1 Polyphase Filter Structures 766
 11.5.2 Interchange of Filters and Downsamplers/Upsamplers 767
 11.5.3 Sampling Rate Conversion with Cascaded Integrator Comb Filters 769
 11.5.4 Polyphase Structures for Decimation and Interpolation Filters 771
 11.5.5 Structures for Rational Sampling Rate Conversion 774
12.2 Innovations Representation of a Stationary Random Process 834
 12.2.1 Rational Power Spectra 836
 12.2.2 Relationships Between the Filter Parameters and the 837
 Autocorrelation Sequence
12.3 Forward and Backward Linear Prediction 838
 12.3.1 Forward Linear Prediction 839
 12.3.2 Backward Linear Prediction 841
 12.3.3 The Optimum Reflection Coefficients for the Lattice Forward and 845
 Backward Predictors
 12.3.4 Relationship of an AR Process to Linear Prediction 846
12.4 Solution of the Normal Equations 846
 12.4.1 The Levinson–Durbin Algorithm 847
 12.4.2 The Schur Algorithm 850
12.5 Properties of the Linear Prediction-Error Filters 855
12.6 AR Lattice and ARMA Lattice-Ladder Filters 858
 12.6.1 AR Lattice Structure 858
 12.6.2 ARMA Processes and Lattice-Ladder Filters 860
12.7 Wiener Filters for Filtering and Prediction 863
 12.7.1 FIR Wiener Filter 864
 12.7.2 Orthogonality Principle in Linear Mean-Square Estimation 866
 12.7.3 IIR Wiener Filter 867
 12.7.4 Noncausal Wiener Filter 872
12.8 Summary and References 873

Problems 874

13 Adaptive Filters 880

13.1 Applications of Adaptive Filters 880
 13.1.1 System Identification or System Modeling 882
 13.1.2 Adaptive Channel Equalization 883
 13.1.3 Echo Cancellation in Data Transmission over Telephone Channels 887
 13.1.4 Suppression of Narrowband Interference in a Wideband Signal 891
 13.1.5 Adaptive Line Enhancer 895
 13.1.6 Adaptive Noise Cancelling 896
 13.1.7 Linear Predictive Coding of Speech Signals 897
 13.1.8 Adaptive Arrays 900
13.2 Adaptive Direct-Form FIR Filters—The LMS Algorithm 902
 13.2.1 Minimum Mean-Square-Error Criterion 903
 13.2.2 The LMS Algorithm 905
13.2.3 Related Stochastic Gradient Algorithms
13.2.4 Properties of the LMS Algorithm

13.3 Adaptive Direct-Form Filters—RLS Algorithms
13.3.1 RLS Algorithm
13.3.2 The LDU Factorization and Square-Root Algorithms
13.3.3 Fast RLS Algorithms
13.3.4 Properties of the Direct-Form RLS Algorithms

13.4 Adaptive Lattice-Ladder Filters
13.4.1 Recursive Least-Squares Lattice-Ladder Algorithms
13.4.2 Other Lattice Algorithms
13.4.3 Properties of Lattice-Ladder Algorithms

13.5 Summary and References
Problems

14 Power Spectrum Estimation

14.1 Estimation of Spectra from Finite-Duration Observations of Signals
14.1.1 Computation of the Energy Density Spectrum
14.1.2 Estimation of the Autocorrelation and Power Spectrum of Random Signals: The Periodogram
14.1.3 The Use of the DFT in Power Spectrum Estimation

14.2 Nonparametric Methods for Power Spectrum Estimation
14.2.1 The Bartlett Method: Averaging Periodograms
14.2.2 The Welch Method: Averaging Modified Periodograms
14.2.3 The Blackman and Tukey Method: Smoothing the Periodogram
14.2.4 Performance Characteristics of Nonparametric Power Spectrum Estimators
14.2.5 Computational Requirements of Nonparametric Power Spectrum Estimates

14.3 Parametric Methods for Power Spectrum Estimation
14.3.1 Relationships Between the Autocorrelation and the Model Parameters
14.3.2 The Yule–Walker Method for the AR Model Parameters
14.3.3 The Burg Method for the AR Model Parameters
14.3.4 Unconstrained Least-Squares Method for the AR Model Parameters
14.3.5 Sequential Estimation Methods for the AR Model Parameters
14.3.6 Selection of AR Model Order
14.3.7 MA Model for Power Spectrum Estimation
14.3.8 ARMA Model for Power Spectrum Estimation
14.3.9 Some Experimental Results
14.4 Filter Bank Methods
 14.4.1 Filter Bank Realization of the Periodogram 1010
 14.4.2 Minimum Variance Spectral Estimates 1012
14.5 Eigenanalysis Algorithms for Spectrum Estimation 1015
 14.5.1 Pisarenko Harmonic Decomposition Method 1017
 14.5.2 Eigen-decomposition of the Autocorrelation Matrix for Sinusoids in 1019
 White Noise
 14.5.3 MUSIC Algorithm 1021
 14.5.4 ESPRIT Algorithm 1022
 14.5.5 Order Selection Criteria 1025
 14.5.6 Experimental Results 1026
14.6 Summary and References 1029

Problems 1030

A Random Number Generators 1041

B Tables of Transition Coefficients for the Design of Linear-Phase 1047
 FIR Filters

References and Bibliography 1053

Answers to Selected Problems 1067

Index 1077