described in Sec- | CHAPTER
results in Exam-

b) with a = 0.8,

Efficient Computation of
the DFT: Fast Fourier
Transform Algorithms

As we have observed in the preceding chapter, the discrete fourier transform (DFT)
plays an important role in many applications of digital signal processing, including
linear filtering, correlation analysis, and spectrum analysis. A major reason for its
importance is the existence of efficient algorithms for computing the DFT.

The main topic of this chapter is the description of computationally efficient
algorithms for evaluating the DFT. Two different approaches are described. One is
a divide-and-conquer approach in which a DFT of size N, where N is a composite
number, is reduced to the computation of smaller DFTs from which the larger DFT
is computed. In particular, we present important computational algorithms, called
fast Fourier transform (FFT) algorithms, for computing the DFT when the size N is
a power of 2 and when it is a power of 4.

The second approach is based on the formulation of the DFT as a linear filtering
operation on the data. This approach leads to two algorithms, the Goertzel algorithm
and the chirp-z transform algorithm, for computing the DFT via linear filtering of
the data sequence.

8.1 Efficient Computation of the DFT: FFT Algorithms

In this section we present several methods for computing the DFT efficiently. In view
of the importance of the DFT in various digital signal processing applications, such as
linear filtering, correlation analysis, and spectrum analysis, its efficient computation is
a topic that has received considerable attention by many mathematicians, engineers,
and applied scientists.

Basically, the computational problem for the DFT is to compute the sequence
{X (k)} of N complex-valued numbers given another sequence of data {x(n)} of length

511

512 Chapter 8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

N, according to the formula
N-1
Xk =Y x@Wy, O0<k=N-1 (8.1.1)
n=0

where
Wy = e /2N (8.1.2)

In general, the data sequence x(n) is also assumed to be complex valued.
Similarly, the IDFT becomes
1 vt "
x(n) =+ ; X(Wy™, ~ 0<n=<N-1 (8.1.3)
Since the DFT and IDET involve basically the same type of computations, our discus-
sion of efficient computational algorithms for the DFT applies as well to the efficient
computation of the IDFT.

We observe that for each value of k, direct computation of X (k) involves N
complex multiplications (4N real multiplications) and N —1 complex additions (4N —
2 real additions). Consequently, to compute all N values of the DFT requires N2
complex multiplications and N 2 — N complex additions.

Direct computation of the DFT is basically inefficient, primarily because it does
not exploit the symmetry and periodicity properties of the phase factor Wy. In
particular, these two properties are:

Symmetry property: Wllf,JrN/ = —wk (8.1.4)
Periodicity property: Wit =Wy (8.1.5)

The computationally efficient algorithms described in this section, known collectively
as fast Fourier transform (FFT) algorithms, exploit these two basic properties of the
phase factor.

8.1.1 Direct Computation of the DFT

For a complex-valued sequence x(rn) of N points, the DFT may be expressed as

Nl 2kn 2rkn
Xrk) = ; [xR(n) cos N -+ x7(n) sin N] (8.1.6)
N-1
. 2mkn 2k
X;(k) =— Z [xR (n) sin N x7(n) cos N n] (8.1.7)

n=0
The direct computation of (8.1.6) and (8.1.7) requires:

1. 2N? evaluations of trigonometric functions.

2. 4N? real multiplications.

3. 4N(N —1) real additions.

4. A number of indexing and addressing operations.

These
items
operat
and 1«
compl

8.1.2

The d
sible
decor

proac .
as FF

DFT,

The ¢
sequ

array

1<1
and

oW

Fig |
x(r

(8.1.1)

(8.1.2)

¢ valued.

(8.1.3)

itations, our discus-
well to the efficient

f X (k) involves N
lex additions (4N —
- DFT requires N2

rily because it does
1ise factor Wy. In

(8.1.4)
(8.1.5)

known collectively
ic properties of the

be expressed as

(8.1.6)

3] (8.1.7)

8.1 Efficient Computation of the DFT: FFT Algorithms 513

These operations are typical of DFT computational algorithms. The operations in
items 2 and 3 resultin the DFT values X (k) and X (k). The indexing and addressing
operations are necessary to fetch the data x(n), 0 < n < N —1, and the phase factors
and to store the results. The variety of DFT algorithms optimize each of these
computational processes in a different way.

8.1.2 Divide-and-Conquer Approach to Computation of the DFT

The development of computationally efficient algorithms for the DFT is made pos-
sible if we adopt a divide-and-conquer approach. This approach is based on the
decomposition of an N-point DFT into successively smaller DFTs. This basic ap-
proach leads to a family of computationally efficient algorithms known collectively
as FFT algorithms.

To illustrate the basic notions, let us consider the computation of an N-point
DFT, where N can be factored as a product of two integers, that is,

N=LM (8.1.8)

The assumption that N is not a prime number is not restrictive, since we can pad any
sequence with zeros to ensure a factorization of the form (8.1.8).

Now the sequence x(n), 0 < n < N—1, canbe stored either in a one-dimensional
array indexed by n or as a two-dimensional array indexed by [and m, where 0 <
I<L—1and0 <m < M —1 asillustrated in Fig. 8.1.1. Note that [is the row index
and m is the column index. Thus, the sequence x(n) can be stored in a rectangular

n—- 0 1 N-1
x(0) x(l) x(2) x(N-1)
(a)
m column index
row index 1 0 1 M-1

0 x(0, 0) x(0, 1)

1 x(1, 0) x(1, 1)

2 x(2,0) x(2, 1)

(b)
Figure 8.1.1 Two dimensional data array for storing the sequence
x(n),0<n<N-1.

514 Chapter 8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

array in a variety of ways, each of which depends on the mapping of index » to the
indexes (I, m).
For example, suppose that we select the mapping

n=Ml+m (8.1.9)
This leads to an arrangement in which the first row consists of the first M elements of

x(n), the second row consists of the next M elements of x(n), and so on, as illustrated
in Fig. 8.1.2(a). On the other hand, the mapping ‘

n=I1+mL (8.1.10)

stores the first L elements of x(n) in the first column, the next L elements in the
second column, and so on, as illustrated in Fig. 8.1.2(b).

Row-wise n=Ml+m
m
! 0] 2 M-1
0 x(0) x(1) x(2) x(M-1)
1 x(M) x(M+1) x(M +2) x(2M - 1)
2 x(2M) x(2M + 1) x(2M +2) x(3M - 1)
S L=11] x((L-=DM) | x((L-1)M +1) | x((L -1)M +2) x(LM - 1)
(@
k Column-wise n=1l+mL
,’ m
l 0 1 2 M-1
0 x(0) x(L) x(2L) - x((M-1)L)
1 x(1) x(L+1) x(2L+ 1) x((M-1)L+1)
2 x(2) x(L+2) x(2L+2) . x((M—=1)L+2)
L-1 x(L-1) x(2L-1) x(3L-1) x(LM - 1)

()

Figure 8.1.2 Two arrangements for the data arrays.

ular,
and

the]
men
on.

resu
the -
SO0

1S 1w
exp
the
for
The

But

ing of index n to the

(8.1.9)

e first M elements of
1so on, as illustrated
(8.1.10)

t L elements in the

M-1
xM-1)

x2M-1)

*x3M-1)

x(LM — 1)

M-1

x((M-1)L)
(M- DL+1)

((M-1)L+2)

(LM - 1)

8.1 Efficient Computation of the DFT: FFT Algorithms 515

A similar arrangement can be used to store the computed DFT values. In partic-
ular, the mapping is from the index & to a pair of indices (p, g), where 0 < p <L -1
and 0 < ¢ < M — 1. If we select the mapping

k=Mp+gq (8.1.11)

the DFT is stored on a row-wise basis, where the first row contains the first M ele-
ments of the DFT X (k), the second row contains the next set of M elements, and so
on. On the other hand, the mapping

k=qgL+p (8.1.12)

results in a column-wise storage of X (k), where the first L elements are stored in
the first column, the second set of L elements are stored in the second column, and
SO on.

Now suppose that x(n) is mapped into the rectangular array x(/, m) and X (k)
is mapped into a corresponding rectangular array X (p, ¢). Then the DFT can be
expressed as a double sum over the elements of the rectangular array multiplied by
the corresponding phase factors. To be specific, let us adopt a column-wise mapping
for x(n) given by (8.1.10) and the row-wise mapping for the DFT given by (8.1.11).
Then

M-1L-1
X(poq) =Y Y x(l,mywgrroetd (8.1.13)
m=0 [=0
But
W]s/Mp+q)(mL+l) — W%meWIr\t;Lq W[]\\I/Ipl WII\;] (8114)
Nmp mqL __ yymq _ ying Mpl _ yrpl _ yrpl
However, Wy, ™" =1, Wy*" = N/L = Wy, and Wy * = WN/M =W, .

With these simplications, (8.1.13) can be expressed as

L-1 M-1
X(p,q) = Z {Wﬁfl [Z x(l, m)W,'J’,qj“ 1% (8.1.15)

=0

m=0

The expression in (8.1.15) involves the computation of DFTs of length M and length
L. To elaborate, let us subdivide the computation into three steps:

1. First, we compute the M -point DFTs

M-1
Fl,g=Y x(.mWy!, 0<q<M-1 (3.1.16)

m=0
for each of therows [=0,1,...,L — 1.
2. Second, we compute a new rectangular array G(/, ¢) defined as

O0<l<L-1

0 s 1 (8.1.17)

G(l,q)=WiF({,q),

516 Chapter 8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

3. Finally, we compute the L-point DFTs

L-1

X(p,q)=Y GU QW) (8.1.18)
=0

for each column ¢ =0,1,..., M — 1, of the array G(l, q).

On the surface it may appear that the computational procedure outlined above is
more complex than the direct computation of the DFT. However, let us evaluate
the computational complexity of (8.1.15). The first step involves the computation
of L DFTs, each of M points. Hence this step requires LM? complex multiplica-
tions and LM (M — 1) complex additions. The second step requires LM complex
multiplications. Finally, the third step in the computation requires ML? complex
multiplications and ML(L — 1) complex additions. Therefore, the computational
complexity is

Complex multiplications: N(M + L + 1)

Complex additions: NM+ L —-2)

where N = ML. Thus the number of multiplications has been reduced from N? to
N(M + L + 1) and the number of additions has been reduced from N(N — 1) to
NM+L-2).

For example, suppose that N = 1000 and we select L =2 and M = 500. Then,
instead of having to perform 10° complex multiplications via direct computation of
the DFT, this approach leads to 503,000 complex multiplications. This represents a
reduction by approximately a factor of 2. The number of additions is also reduced
by about a factor of 2.

When N is a highly composite number, thatis, N can be factored into a product
of prime numbers of the form

(8.1.19)

N=nrr--r (8.1.20)

then the decomposition above can be repeated (v — 1) more times. This proce-
dure results in smaller DFTs, which, in turn, leads to a more efficient computational
algorithm.

In effect, the first segmentation of the sequence x(n) into a rectangular array
of M columns with L elements in each column resulted in DFTs of sizes L and
M. Further decomposition of the data in effect involves the segmentation of each
row (or column) into smaller rectangular arrays which result in smaller DFTs. This
procedure terminates when N is factored into its prime factors.

EXAMPLES.1.1

Toillustrate this computational procedure, let us consider the computation of an N = 15 point
DFT. Since N =5x3 = 15, we select L = 5 and M = 3. In other words, we store the 15-point
sequence x(n) column-wise as follows:

Row1l: x(0,0) =x(0) x(0,1) =x(5) x(0,2) =x(10)
Row2: x(1,0)=x(1) x(1,1) =x(6) x(1,2)=x(11)
Row3: x2,00=x2) x2, 1) =x7) x2,2) =x(12)
Row4: x(3,00=x@3) x3,1)=x@) x(3,2) =x(13)
Row5: x4,0)=x4) x4 1) =x0) x4,2) =x14)

N
follow

comp

-

(8.1.18)

outlined above is
1, let us evaluate
; the computation
mplex multiplica-
ires LM complex
res ML? complex
he computational

(8.1.19)

duced from N? to
rom N(N — 1) to

d M = 500. Then,
ct computation of

This represents a
ns is also reduced

red into a product

(8.1.20)

imes. This proce-
ent computational

rectangular array
Ts of sizes L and
mentation of each
maller DFTs. This

nofan N = 15 point
we store the 15-point

L0)
11)
12)
13)
[4)

8.1 Efficient Computation of the DFT: FFT Algorithms 517

Now, we compute the three-point DFTs for each of the five rows. This leads to the
following 5 x 3 array:
F(0,0) FO,1) F(0,2)
F(,0) F(,1) F(1,2)
F(2,0) F2,1) F(2,2)
F(3,0) F@3, 1 F@3,2)
F4,0) F4,1 F4,2)
The next step is to multiply each of the tetms F(/, g) by the phase factors W,lf = Wllg s
0 <! <4 and 0 < g <2. This computation results in the 5 x 3 array:

Column 1 Column 2 Column 3

G(0,0) GO, 1) G(0,2)
G(1,0) G, 1 G1,2)
G(2,0) G2, 1) G(2,2)
G3,0) G@3, 1 G@3,2)
G4,0) G4, 1) G#4,2)

The final step is to compute the five-point DFTs for each of the three columns. This
computation yields the desired values of the DFT in the form

X(0,0) = X(0) X0,1)=X1) X0,2)=X@2)
X(1,00=X@3) X1, H=X4) X(1,2)=X(0®)
X(2,0) = X(6) X2, H)=X X2,2)=X(®)
X@3,00=X0) X3, 1) =Xx10) X3,2)=Xx11)
X4,0)=X(12) X4, 1H)=Xx13) X4,2)=X14)
Figure 8.1.3 illustrates the steps in the computation.

It is interesting to view the segmented data sequence and the resulting DFT in terms
of one-dimensional arrays. When the input sequence x(n) and the output DFT X (k) in the
two-dimensional arrays are read across from row 1 through row 5, we obtain the following
sequences:

INPUT ARRAY
x(0) x(5) x(10) x(1) x(6) x(11) x(2) x(7) x(12) x(3) x(8) x(13) x(4) x(9) x(14)
OUTPUT ARRAY
X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X (11) X (12) X (13) X (14)
LAY
(10) o ' [e x®
S e e d\&é , X
o | O £ ‘ X0
6 1}
{ 12 (1) @ N [[: ;(3) —e X(8)
4] ' A)
2 3] x@e =
8 ' 2 X(6)
3 14) x0) — A o [T X1D
. N \ X(9)
X .
4 X(12)

Figure 8.1.3 Computation of N = 15-point DFT by means of 3-point and 5-point
DFTs.

518 Chapter8 Efficient Computation of the DFT: Fast Fourier Transform Algorithms

We observe that the input data sequence is shuffled from the normal order in the compu-
tation of the DFT. On the other hand, the output sequence occurs in normal order. In this case
the rearrangement of the input data array is due to the segmentation of the one-dimensional
array into a rectangular array and the order in which the DFTs are computed. This shuffling
of either the input data sequence or the output DFT sequence is a characteristic of most FFT
algorithms.

To summarize, the algorithm that we have introduced involves the following
computations:

Algorithm 1

Store the signal column-wise.

Compute the M -point DFT of each row.

1.
2.
3. Multiply the resulting array by the phase factors Wll\?.
4. Compute the L-point DFT of each column

5.

Read the resulting array row-wise.

An additional algorithm with a similar computational structure can be obtained if
the input signal is stored row-wise and the resulting transformation is column-wise.
In this case we select

n=Ml+m
(8.1.21)
k=qL+p
This choice of indices leads to the formula for the DFT in the form
M-1L-1
X(pog) =Y > xUm)Wy" W' wi'
i m=0 [=0
(8.1.22)
M—1 L1
— Z Wﬂq [Zx(l,m)W,’dpjl W]':;p
m=0 1=0

Thus we obtain a second algorithm.

Algorithm 2

1. Store the signal row-wise.

2. Compute the L-point DFT at each column.

3. Multiply the resulting array by the factors Wj".
4. Compute the M -point DFT of each row.

5. Read the resulting array column-wise.

The
in t
divi
resi

8.1
In-
the -
wh
ver
nr.
DI

us¢

COl

po
od’

th

s€

