
Equations for the Raised Cosine and Square-Root

Raised Cosine Shapes

1 Raised Cosine Spectrum

A family of spectra that satisfy the Nyquist Theorem is the raised cosine family whose spectra are
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where the parameter roll-off factor� is a real number in the interval0 � � � 1 that determines

the bandwidth of the the spectrum. Since the spectrum is zero forjf j > 1+�
2Ts

, the bandwidth of the

baseband pulse is1+�
2Ts

. For bandpass QAM modulation, the bandwidth is twice that:
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Ts
= (1 + �)Rs (2)

whereRs is the transmitted symbol rate. The ideal low-pass rectangular spectrum is the special

case where� = 0 which has a passband bandwidth equal to the symbol rate.

The corresponding time domain signal is
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Observe thatz(t) has zero-crossings att = �Ts;�2Ts; : : : . The time series corresponding to

the special case� = 0 (the ideal low-pass rectangular spectrum) issin(�t=Ts)=(�t=Ts) just as

expected.
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Figure 1: Raised cosine spectra and corresponding time-domain pulses for various values of�.

The spectra and corresponding time series for various values of� are plotted in Figure 1. Note

that larger values of� (larger bandwidths) are characterized by a time-domain signal that has faster

sidelobe decay rates.
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2 Square Root Raised Cosine Spectrum and Pulse Shape

The square-root raised cosine pulse shapep(t) and it’s Fourier transformP (f) are given by

P (f) = jZ(f)j1=2 (4)
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These functions are plotted in Figure 2. Note that the zero crossings of the time-domain pulse

shape are spaced byTs seconds (i.e. by the symbol time). The spacing between the zero crossings

is also a function of the roll-off factor� — as� approaches zero, the spacing approachesTs.
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Figure 2: Square-root raised cosine spectra and corresponding time-domain pulses for various

values of�.
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3 Truncation

The good thing about the square-root raised cosine pulse shape is that the corresponding matched

filter output has no ISI. The bad thing is that the pulse shape has infinite support in time. In a

practical system, pulses cannot last indefinitely. So the pulse shape is truncated. The result of

truncation is the presence of non-zero side lobes in the frequency domain — the spectrum is no

longer zero forjf j > 1+�
2Ts

. This is illustrated in Figures 3 through 5. In Figure 3, the pulse given

by (5) is sampled atN = 4 samples/symbol and is truncated to span only 4 symbols as shown

in the upper plot. The lower plot of Figure 3 shows the consequence in the frequency domain:

high sidelobes and a significant pass-band ripple. The stop band attenuation is only 18 dB which

is not enough for practical applications. In Figure 4, the pulse given by (5) is sampled atN = 4

samples/symbol and is truncated to span 8 symbols as shown in the upper plot. In the frequency

domain, we see that the pass band ripple has been eliminated but and the out-of-band sidelobes are

now about 25 dB down. In Figure 5, the pulse given by (5) is sampled atN = 4 samples/symbol

and is truncated to span 16 symbols as shown in the upper plot. Now the out-of-band sidelobes are

about 32 dB down. Clearly, as the time span of the pulse is increased, the spectrum approaches the

ideal spectrum.

In general, the smaller the roll-off factor, the longer the pulse shape needs to be in order to

achieve a desired stop-band attenuation. Current practice requires a stop band attenuation of about

40 dB. A good rule-of-thumb that achieves this is

Lsymbol= �44� + 33 (6)

for 0:2 < � �< 0:75 whereLsymbol is the length of the filter measured in symbols. Clearly, the

prediction ofLsymbol = 0 for � = 0:75 is an understatement of the required filter length. The values

generated by this formula are intended to be starting points. The resulting filter characeteristics

should be verified using the DFT.
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Figure 3: The effects of truncation on the square-root raised cosine pulse shape. Top plot: the

square-root raised cosine pulse shape sampled atN = 4 samples/symbol with� = 0:5 and trun-

cated to span 4 symbols. Lower plot: the corresponding spectrum.

6



−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t/T
s

p(
nT

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−80

−60

−40

−20

0

fT
s

P
(f

)(
dB

)

Figure 4: The effects of truncation on the square-root raised cosine pulse shape. Top plot: the

square-root raised cosine pulse shape sampled atN = 4 samples/symbol with� = 0:5 and trun-

cated to span 8 symbols. Lower plot: the corresponding spectrum.
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Figure 5: The effects of truncation on the square-root raised cosine pulse shape. Top plot: the

square-root raised cosine pulse shape sampled atN = 4 samples/symbol with� = 0:5 and trun-

cated to span 16 symbols. Lower plot: the corresponding spectrum.
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