EE E6820: Speech & Audio Processing & Recognition

Lecture 5: Speech modeling

- Modeling speech signals
- 2 Spectral and cepstral models
- **3** Linear Predictive models (LPC)
- 4 Other signal models
- **5** Speech synthesis

Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/e6820/

Columbia University Dept. of Electrical Engineering Spring 2006

2006-02-16 - 1

L05 - Speech models

The speech signal

• Speech sounds in the spectrogram

- Elements of the speech signal:
 - spectral resonances (formants, moving)
 - periodic excitation (voicing, pitched)
 - + pitch contour
 - noise excitation (fricatives, unvoiced, no pitch)
 - transients (stop-release bursts)
 - amplitude modulation (nasals, approximants)
 - timing!

The source-filter model

• Notional separation of:

source: excitation, fine time-frequency structure

& filter: resonance, broad spectral structure

• More a modeling approach than a single model

Signal modeling

- Signal models are a kind of representation
 - to make some aspect explicit
 - for efficiency
 - for flexibility
- Nature of model depends on goal
 - classification: remove irrelevant details
 - coding/transmission: remove perceptual irrelevance
 - modification: isolate control parameters
- But commonalities emerge
 - perceptually irrelevant detail (coding) will also be irrelevant for classification
 - modification domain will usually reflect 'independent' perceptual attributes
 - getting at the abstract information in the signal

Different influences for signal models

- Receiver:
 - see how signal is treated by listeners
 - → cochlea-style filterbank models ...

• Transmitter (source)

- physical vocal apparatus can generate only a limited range of signals...
 - → LPC models of vocal tract resonances
- Making explicit particular aspects
 - compact, separable correlates of resonances
 - → cepstrum
 - modeling prominent features of NB spectrogram
 - \rightarrow sinusoid models
 - addressing unnaturalness in synthesis
 - → Harmonic+Noise model

Applications of (speech) signal models

- Classification / matching
 Goal: highlight important information
 - speech recognition (lexical content)
 - speaker recognition (identity or class)
 - other signal classification
 - content-based retrieval
- Coding / transmission / storage Goal: represent just enough information
 - real-time transmission e.g. mobile phones
 - archive storage e.g. voicemail
- Modification/synthesis Goal: change certain parts independently
 - speech synthesis / text-to-speech (change the words)
 - speech transformation / disguise (change the speaker)

Outline

2 Spectral and cepstral models

- Auditorily-inspired spectra
- The cepstrum
- Feature correlation
- (3) Linear predictive models (LPC)
- **Other models**
- **Speech synthesis** 5

2 Spectral and cepstral models

- Spectrogram seems like a good representation
 - long history
 - satisfying in use
 - experts can 'read' the speech
- What is the information?
 - intensity in time-frequency cells;
 typically 5ms x 200 Hz x 50 dB
- → **Discarded detail:**
 - phase
 - fine-scale timing
- The starting point for other representations

The filterbank interpretation of the short-time Fourier transform (STFT)

• View spectrogram rows as coming from separate bandpass filters:

• Mathematically:

$$X[k, n_{0}] = \sum_{n} x[n] \cdot w[n - n_{0}] \cdot \exp{-j\left(\frac{2\pi k(n - n_{0})}{N}\right)}$$
$$= \sum_{n} x[n] \cdot h_{k}[n_{0} - n]$$
where $h_{k}[n] = w[-n] \cdot \exp{j\left(\frac{2\pi kn}{N}\right)}$

Spectral models: Which bandpass filters?

- Constant bandwidth? (analog / FFT)
- But: cochlea physiology & critical bandwidths
 - → implement ear models with bandpass filters
 & choose bandwidths by e.g. CB estimates

• Auditory frequency scales

- constant 'Q' (center freq/bandwidth), mel, Bark...

Gammatone filterbank

- Given bandwidths, which filter shapes?
 - match inferred temporal integration window
 - match inferred spectral shape (sharp hi-F slope)
 - keep it simple (since it's only approximate)
- → Gammatone filters

Constant-BW vs. cochlea model

• Frequency responses:

• Spectrograms:

• Magnitude smoothed over 5-20 ms time window

Limitations of spectral models

- Not much data thrown away
 - just fine phase/time structure (smoothing)
 - little actual 'modeling'
 - still a large representation!
- Little separation of features
 - e.g. formants and pitch
- Highly correlated features
 - modifications affect multiple parameters
- But, quite easy to reconstruct
 - iterative reconstruction of lost phase

The cepstrum

• Original motivation: Assume a source-filter model:

- Define 'Homomorphic deconvolution':
 - source-filter convolution: g[n]*h[n]
 - FT \rightarrow product $G(e^{j\omega}) \cdot H(e^{j\omega})$
 - $\log \rightarrow \text{sum}$: $\log G(e^{j\omega}) + \log H(e^{j\omega})$
 - IFT

→ separate fine structure: $c_g[n] + c_h[n]$

- = deconvolution
- Definition:

Real cepstrum $c_n = idft(log|dft(x[n])|)$

Stages in cepstral deconvolution

- Original waveform has excitation fine structure convolved with resonances
- DFT shows harmonics modulated by resonances
- Log DFT is sum of harmonic 'comb' and resonant bumps
- IDFT separates out resonant bumps (low quefrency) and regular, fine structure ('pitch pulse')
- Selecting low-n cepstrum separates resonance information (deconvolution / 'liftering')

Properties of the cepstrum

- Separate source (fine) & filter (broad structure)
 - smooth the log mag. spectrum to get resonances
- Smoothing spectrum is filtering along freq.
 - i.e. convolution applied in Fourier domain
 → multiplication in IFT ('liftering')
- Periodicity in time → harmonics in spectrum
 → 'pitch pulse' in high-n cepstrum
- Low-n cepstral coefficients are DCT of broad filter / resonance shape:

L05 - Speech models

2006-02-16 - 16

0

E6820 SAPR - Dan Ellis

Aside: Correlation of elements

- Cepstrum is a popular in speech recognition
 - feature vector elements are decorrelated:

- Decorrelated pdfs fit diagonal Gaussians
 - simple correlation is a waste of parameters
- DCT is close to PCA for (mel) spectra?

2006-02-16 - 17

L05 - Speech models

Outline

- 1 Modeling speech signals
- **2** Spectral and cepstral modes

3 Linear Predictive models (LPC)

- The LPC model
- Interpretation & application
- Formant tracking
- 4 Other models
- **5** Speech synthesis

3 Linear predictive modeling (LPC)

• LPC is a very successful speech model

- it is mathematically efficient (IIR filters)
- it is remarkably accurate for voice (fits source-filter distinction)
- it has a satisfying physical interpretation (resonances)

• Basic math

- model output as linear function of prior outputs:

$$s[n] = (\sum_{k=1}^{p} a_k \cdot s[n-k]) + e[n]$$

... hence "linear prediction" (p^{th} order)

- e[n] is excitation (input), a/k/a prediction error

$$\Rightarrow \frac{S(z)}{E(z)} = \frac{1}{(1 - \sum_{k=1}^{p} a_k \cdot z^{-k})} = \frac{1}{A(z)}$$

- ... all-pole modeling,
- 'autoregression' (AR) model

Vocal tract motivation for LPC

• Direct expression of source-filter model:

$$s[n] = (\sum_{k=1}^{p} a_k \cdot s[n-k]) + e[n]$$

- Acoustic tube models suggest all-pole model for vocal tract
- Relatively slowly-changing
 - update A(z) every 10-20 ms
- Not perfect: Nasals introduce zeros

Estimating LPC parameters

• Minimize short-time squared prediction error:

$$E = \sum_{n=1}^{m} e^{2}[n] = \sum_{n} \left\{ s[n] - \sum_{k=1}^{p} a_{k} s[n-k] \right\}^{2}$$

Differentiate w.r.t. a_k to get eqns for each k:

$$\sum_{n} 2(s[n] - \sum_{j=1}^{p} a_{j}s[n-j]) \cdot (-s[n-k]) = 0$$

$$\sum_{n} s[n]s[n-k] = \sum_{j} a_{j} \cdot \sum_{n} s[n-j]s[n-k]$$

$$\phi(0,k) = \sum_{j} a_{j} \cdot \phi(j,k)$$

where
$$\phi(j, k) = \sum_{n=1}^{m} s[n-j]s[n-k]$$

are correlation coefficients

• *p* linear equations to solve for all a_j s...

Evaluating parameters

- Linear equations $\phi(0, k) = \sum_{j=1}^{p} a_j \cdot \phi(j, k)$
- If s[n] is assumed zero outside some window $\phi(j,k) = \sum_{n} s[n-j]s[n-k] = r_{ss}(|j-k|)$
 - $r_{ss}(\tau)$ is autocorrelation

Hence equations become:

$$\begin{bmatrix} r(1) \\ r(2) \\ \dots \\ r(p) \end{bmatrix} = \begin{bmatrix} r(0) & r(1) & \dots & r(p-1) \\ r(1) & r(2) & \dots & r(p-2) \\ \dots & \dots & \dots & \dots \\ r(p-1) & r(p-2) & \dots & r(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_p \end{bmatrix}$$

- Toeplitz matrix (equal antidiagonals)
 → can use Durbin recursion to solve
- (Solve full $\phi(j, k)$ via Cholesky)

Interpreting LPC

• Picking out resonances

 if signal really was source + all-pole resonances, LPC should find the resonances

• Least-squares fit to spectrum

- minimizing $e^2[n]$ in time domain is the same as minimizing $E^2(e^{j\omega})$ (by Parseval)
- →close fit to spectral *peaks*; valleys don't matter

Removing smooth variation in spectrum

- 1/A(z) is low-order approximation to S(z)

$$-\frac{S(z)}{E(z)} = \frac{1}{A(z)}$$

- hence, residual E(z) = A(z)S(z) is 'flat' version of S
- Signal whitening:
 - white noise (independent *x*[*n*]s) has flat spectrum
 - →whitening removes temporal correlation

Alternative LPC representations

- Many alternate *p*-dimensional representations:
 - coefficients $\{a_i\}$
 - roots $\{\lambda_i\}$: $\prod (1 \lambda_i z^{-1}) = 1 \sum a_i z^{-1}$
 - line spectrum frequencies...
 - reflection coefficients $\{k_i\}$ from lattice form

- tube model log area ratios
$$g_i = \log\left(\frac{1-k_i}{1+k_i}\right)$$

• Choice depends on:

- mathematical convenience/complexity
- quantization sensitivity
- ease of guaranteeing stability
- what is made explicit
- distributions as statistics

LPC Applications

• Analysis-synthesis (coding, transmission):

$$-S(z) = \frac{E(z)}{A(z)}$$

hence can reconstruct by filtering e[n] with $\{a_i\}$ s

- whitened, decorrelated, minimized *e*[*n*]s are easy to quantize
- .. or can model e[n] e.g. as simple pulse train
- Recognition/classification
 - LPC fit responds to spectral peaks (formants)
 - can use for recognition (convert to cepstra?)
- Modification
 - separating source and filter supports crosssynthesis
 - pole / resonance model supports 'warping' (e.g. male → female)

Aside: Formant tracking

- Formants carry (most?) linguistic information
- Why not classify → speech recognition ?
 - e.g. local maxima in cepstral-liftered spectrum pole frequencies in LPC fit
- But: recognition needs to work in all circumstances
 - formants can be obscure or undefined Original (mpgr1_sx419)

Outline

- 1 Modeling speech signals
- **2** Spectral and cepstral modes
- **3** Linear predictive models (LPC)

4 Other models

- Sinewave modeling
- Harmonic+Noise model (HNM)

Other models: Sinusoid modeling

- Early signal models required low complexity
 e.g. LPC
- Advances in hardware open new possibilities...
- NB spectrogram suggests harmonics model:

- 'important' info in 2-D surface is set of tracks?
- harmonic tracks have ~ smooth properties
- straightforward resynthesis

Sine wave models

• Model sound as sum of AM/FM sinusoids:

$$s[n] = \sum_{k=1}^{N[n]} A_k[n] \cos(n \cdot \omega_k[n] + \phi_k[n])$$

- A_k , ω_k , ϕ_k piecewise linear or constant
- can enforce harmonicity: $\omega_k = k \cdot \omega_0$
- Extract parameters directly from STFT frames:

Finding sinusoid peaks

- Look for local maxima along DFT frame
 - i.e. |S[k-1,n]| < |S[k,n]| > |S[k+1,n]|
- Want exact frequency of implied sinusoid
 - DFT is normally quantized quite coarsely
 e.g. 4000 Hz / 256 bins = 15.6 Hz
 - interpolate at peaks via, e.g., quadratic fit

• Or, use differential of phase along time (pvoc):

-
$$\omega = \frac{a\dot{b} - b\dot{a}}{a^2 + b^2}$$
 where $S[k,n] = a + jb$

Sinewave modeling applications

- Modification (interpolation) & synthesis
 - connecting arbitrary $\omega \& \phi$ requires cubic phase interpolation (because $\omega = \dot{\phi}$)
- Types of modification
 - time & frequency scale modification
 - .. with or without changing formant envelope
 - concatenation/smoothing boundaries
 - phase realignment (for crest reduction)
- Non-harmonic signals? OK-ish

Harmonics + noise model

- Motivation to improve sinusoid model because:
 - problems with analysis of real (noisy) signals
 - problems with synthesis quality (esp. noise)
 - perceptual suspicions

• Model:

$$s[n] = \sum_{k=1}^{N[n]} A_k[n] \cos(n \cdot k \cdot \omega_0[n]) + e[n] \cdot (h_n[n] \otimes b[n])$$

Harmonics

Noise

- sinusoids are forced to be harmonic
- remainder is filtered & time-shaped noise

HNM analysis and synthesis

• Dynamically adjust $F_m[n]$ based on 'harmonic test':

• Noise has envelopes in time e[n] and freq H_n

- reconstruct bursts / synchronize to pitch pulses

Outline

- 1 Modeling speech signals
- **2** Spectral and cepstral modes
- **3** Linear predictive models (LPC)
- 4 Other models

5 Speech synthesis

- Phone concatenation
- Diphone synthesis

Speech synthesis

- One thing you can do with models
- Synthesis easier than recognition?
 - listeners do the work
 - .. but listeners are very critical
- Overview of synthesis

- normalization disambiguates text (abbreviations)
- phonetic realization from pronouncing dictionary
- prosodic synthesis by rule (timing, pitch contour)
- .. all controls waveform generation

Source-filter synthesis

• Flexibility of source-filter model is ideal for speech synthesis

- Excitation source issues:
 - voiced / unvoiced / mixture ([th] etc.)
 - pitch cycle of voiced segments
 - glottal pulse shape \rightarrow voice quality?

Vocal tract modeling

• Simplest idea:

Store a single VT model for each phoneme

- but: discontinuities are very unnatural
- Improve by smoothing between templates

- trick is finding the right domain

Cepstrum-based synthesis

- Low-*n* cepstrum is compact model of target spectrum
- Can invert to get actual VT IR waveform:

 $c_n = idft(log|dft(x[n])|)$

- $\rightarrow h[n] = idft(exp(dft(c_n)))$
- All-zero (FIR) VT response
 → can pre-convolve with glottal pulses

LPC-based synthesis

- Very compact representation of target spectra
 - 3 or 4 pole pairs per template
- Low-order IIR filter → very efficient synthesis
- How to interpolate?
 - cannot just interpolate a_i in a running filter
 - but: lattice filter has better-behaved interpolation

- What to use for excitation
 - residual from original analysis
 - reconstructed periodic pulse train
 - parameterized residual resynthesis

Diphone synthesis

- Problems in phone-concatenation synthesis
 - phonemes are context-dependent
 - coarticulation is complex
 - transitions are critical to perception

→ store *transitions* instead of just phonemes

- ~40 phones \rightarrow 800 diphones
- or even more context if have a larger database
- How to splice diphones together?
 - TD-PSOLA: align pitch pulses and cross-fade
 - MBROLA: normalized, multiband

HNM synthesis

- High quality resynthesis of real diphone units
 + parametric representation for modifications
 - pitch, timing modifications
 - removal of discontinuities at boundaries
- Synthesis procedure:
 - linguistic processing gives phones, pitch, timing
 - database search gives best-matching units
 - use HNM to fine-tune pitch & timing
 - cross-fade A_k and ω_0 parameters at boundaries

- Careful preparation of database is key
 - sine models allow phase alignment of all units
 - larger database improves unit match

Generating prosody

- The real factor limiting speech synthesis?
- Waveform synthesizers have inputs for
 - intensity (stress)
 - duration (phrasing)
 - fundamental frequency (pitch)
- Curves produced by superposition of (many) inferred linguistic rules
 - phrase final lengthening, unstressed shortening..

Or learn rules from transcribed examples

Summary

• Range of models:

- spectral, cepstral
- LPC, Sinusoid, HNM
- Range of applications:
 - general spectral shape (filterbank) \rightarrow ASR
 - precise description (LPC+residual) \rightarrow coding
 - pitch, time modification (HNM) \rightarrow synthesis
- Issues:
 - performance vs. computational complexity
 - generality vs. accuracy
 - representation size vs. quality

Parting thought:

not all parameters are created equal ...

