OFDM Example
Given: $N=4 \quad L=3$

$$
\begin{aligned}
x[h] & =\sum_{k=0}^{3} b_{k} s_{k}[n] \\
h[n] & =\left\{\sum_{\uparrow}^{j}, 1,-j\right\} \\
& =j \delta[n]+\delta[n-1]-j \delta[n-2]
\end{aligned}
$$

- After cyclic prefix is added AND after convolution with channel $h(n)$,

$$
\begin{aligned}
\tilde{y}[n] & =\left\{\frac{1}{2} j, \frac{1}{2}-\frac{1}{2} j,-\frac{1}{2}, \frac{1}{2}+j, \frac{1}{2}, \frac{1}{2}-j,-\frac{1}{2}, \frac{1}{2}+\frac{1}{2} j, \frac{-j}{2}\right\} \\
n & =\underbrace{-3-2}_{\text {at beginning }}-1 \\
\underbrace{}_{\text {discard } L=3 \text { pts }} & \underbrace{012}_{\text {Kep }} 3 \underbrace{4}_{\begin{array}{c}
\text { discard } L-1 \\
\text { pts. at end }
\end{array}} 5
\end{aligned}
$$

$$
\begin{equation*}
y[n]=\left\{\frac{1}{2}+j, \frac{1}{2}, \frac{1}{2}-j,-\frac{1}{2}\right\} \tag{2}
\end{equation*}
$$

Before we proceed, we are exine to need

$$
\begin{aligned}
& H_{N}(k)=\left.H(w)\right|_{\omega=k \frac{2 \pi}{4}} \quad l=0,1,2,3 \\
& h[n]=\{j, 1,-j\}_{i} \\
& H(z)=j+z^{-1}-j z^{-2} \\
& H(\omega)=\left.H(z)\right|_{z=e^{j \omega}} \\
& H_{N}(k)=\left.H(z)\right|_{z=e^{j \frac{2 \pi}{4}} \quad ; k=0,1, z, 3}
\end{aligned}
$$

$$
\begin{aligned}
& w=0 \Rightarrow z=e^{j 0}=1 \\
& \omega=\frac{2 \pi}{4}=\frac{\pi}{2} \Rightarrow z=e^{j \frac{\pi}{2}}=j \\
& w=\frac{2(2 \pi)}{4}=\pi \Rightarrow z=e^{j \frac{\pi}{2}}=-1 \\
& \omega=\frac{3(2 \pi)}{4}=\frac{3 \pi}{2}-\frac{4 \pi}{2} \Rightarrow-\frac{\pi}{2} \Rightarrow z=e^{-j \frac{\pi}{2}}=-j \\
& H_{N}(0)=\left.H(z)\right|_{z=1}=j+(1)^{-1}-j(1)^{-2}=1 \\
& H_{N}(1)=\left.H(z)\right|_{z=j}=j+(j)^{-1}-j(j)^{-2}=j \\
& H_{N}(2)=\left.H(z)\right|_{z=-1}=j+(-1)^{-1}-j(-1)^{-2}=-1 \\
& H_{N}(3)=\left.H(z)\right|_{z=-j}=j+(-j)^{-1}-j(-j)^{-2}=3 j
\end{aligned}
$$

Also, we need the four sinewaves:

$$
\begin{aligned}
& s_{0}[n]=e^{j 0 \frac{2 \pi}{4} n}\{u(n)-u[n-4)\}=\{1,1,1,1\} \\
& s_{1}(n)=e^{j \frac{2 \pi}{4} n}\{u(n)-u[n-4]\}=\{1, j,-1,-j\} \\
& s_{2}[n]=e^{j \frac{2}{4} n}\{u[n]-u[n-4]\}=\{1,-1,1,-1\} \\
& S_{3}[n]=e^{j 3\left(\frac{2 \pi}{4}\right) n}\{u[n]-u(n-4)\}=\{1,-j,-1, j\}
\end{aligned}
$$

Need to compute:

$$
b_{k}=\frac{1}{4} \sum_{n=0}^{3} y[n] s_{k}^{*}(n] / H_{N}(k)
$$

$$
\begin{aligned}
b_{0} & =\frac{(1)\left(\frac{1}{2}+j\right)+(1)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{2}-j\right)+(1)\left(-\frac{1}{2}\right)}{1} \\
& =1 \sqrt{b_{2}=1} \\
b_{1} & =\frac{(1)\left(\frac{1}{2}+j\right)+(j)^{*}\left(\frac{1}{2}\right)+(-1)\left(\frac{1}{2}-j\right)+(-j)^{*}\left(-\frac{1}{2}\right)}{j} \\
& =1 \quad b_{1}=1 \\
b_{2} & =\frac{(1)\left(\frac{1}{2}+j\right)+(-1)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{2}-j\right)+(-1)\left(-\frac{1}{2}\right)}{((-1)} \\
& =-1 \frac{b_{2}=-1}{} \\
b_{3} & =\frac{(1)\left(\frac{1}{2}+j\right)+(-j)^{*}\left(\frac{1}{2}\right)+(-1)\left(\frac{1}{2}-j\right)+(j)^{*}\left(-\frac{1}{2}\right)}{3 j} \\
& =1
\end{aligned}
$$

