On Digital Filtering to Effect a Fractional Time-Shift

Consider
$$\chi_{a}(t)$$
 to be bandlimited such that $\chi_{a}(f) = 0$ for $|f| > W$

Ultimately we will sample at $F_{s} > 2W$ ($F_{s} = \frac{1}{I_{s}}$)

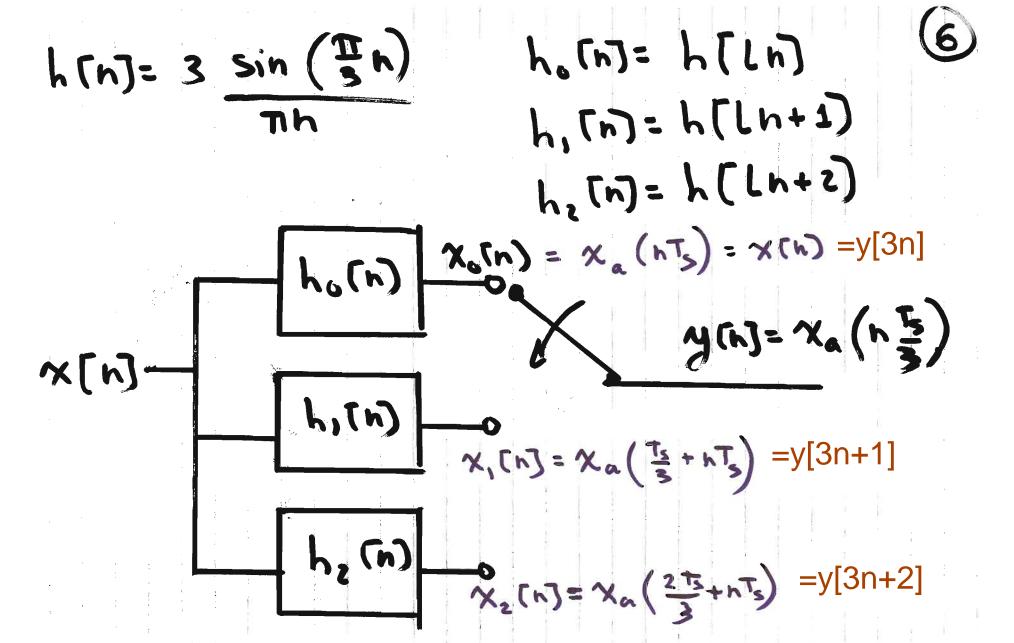
Note: $\sin(\frac{\pi}{T_{s}}t) \xrightarrow{\Gamma_{s}} \frac{1}{\sqrt{T_{s}}t}$

Thus: $\chi_{a}(t) * \sin(\frac{\pi}{T_{s}}t) = \chi_{a}(t)$
 $\chi_{a}(t) * \delta(t-t_{0}) * \sin(\frac{\pi}{T_{s}}t) = \chi_{a}(t-t_{0})$
 $\chi_{a}(t) * \frac{\sin(\frac{\pi}{T_{s}}t) - \chi_{a}(t-t_{0})}{\pi(t-t_{0})} = \chi_{a}(t-t_{0})$

$$\frac{\chi_{a}(t) * \sin\left(\frac{\pi}{T_{s}}(t+t_{o})\right)}{\pi(t+t_{o})} = \chi_{a}(t+t_{o})$$

$$\frac{\pi(t+t_{o})}{\pi(t+t_{o})} = \chi_{a}(t+t_{o})$$

$$\chi_{a}(t) * \sin\left(\frac{\pi}{T_{s}}(t+t_{o})\right) = \chi_{a}(t+t_{o})$$


$$\frac{\pi(t+t_{o})}{\pi(t+t_{o})} = \chi_{a}(t+t_{o})$$
Since both $\chi_{a}(t)$ and the ideal lawpase interpolating filter are bandlimited to $\frac{F_{a}}{2}$, we can sample eqn. above at $t=nT_{s}$ to obtain:
$$\chi_{a}(nT_{s}) * \sin\left(\frac{\pi}{T_{s}}(nT_{s}+t_{o})\right) = \chi_{a}(nT_{s}+t_{o})$$
of convolution $\pi(nT_{s}+t_{o}) = \chi_{a}(t+t_{o})$

$$\chi_{a}(nT_{s}) * \sin\left(\frac{\pi}{T_{s}}(nT_{s}+t_{o})\right) = \chi_{a}(t+t_{o})$$

Recall relationship between CTFT and DTFT if Sampling Rate is above (or at) Myquist Rate $X(w) = F_s X_{\alpha} \left(\frac{F_s}{2\pi} w \right)$ for $-\pi < w < \pi$ hax(t)= sin(事(t+とな)) の (t+とな)) for - をくちった。 Thus: 2TT = WETS

-THE WETS Dt = To in DT convolution approx. to CT convolution integral

Approximating area under curve via sum of area under restangles: f(x)dx = Zf(Rax) ax k=-00 mid +4 heir ht Applied to convolution integraly(t)= (x(r)h(t-r)dr = > x (RAT) h (t-RAT) AT Then discretize t (or sample y(t)): $y(n) = y(nT_5) = y(n\Delta T)$ $y(n) = \sum_{R} \chi(R\Delta T) h(n-R)\Delta T) \Delta C h(R) = h(R\Delta T)$ YCM= y(NTS) = y(NAT) = 2 x [R] h [n - R] A ?

In this set of notes, x_0 [n], x_1 [n] and x_2 [n] represent the fractional time-shift filter outputs in the case of upsampling ONE signal.

Ho(w) = 1 for | w | < T : H, (w)= e 1 3 w シアドラララ H2(m)= 613m シとけんからまる (H2(W) 51940= 3 polyphase!