Problem 1. An OFDM signal is synthesized as a sum of four sinewaves of length 4 as

$$
\tilde{x}[n]=\frac{1}{4} \sum_{k=0}^{3} b_{k} e^{j 2 \pi \frac{k}{4} n}\{u[n]-u[n-4]\}
$$

Each of the four values b_{k} is one of the eight values listed in the symbol alphabet below.

$$
b_{k} \in\{-7,-5,-3,-1,1,3,5,7\} \quad k=0,1,2,3
$$

We know in advance that the signal we transmit will be convolved with a filter of length $L=3$. Thus, we add a cyclic prefix of length 3 which effective creates a sum of sinewaves of length 7 as prescribed below:

$$
x[n]=\frac{1}{4} \sum_{k=0}^{3} b_{k} e^{j 2 \pi \frac{k}{4} n}\{u[n+3]-u[n-4]\}
$$

The sequence of length 7 above is convolved with the filter below of length 3 .

$$
h[n]=\{2,4,1\}=2 \delta[n]+4 \delta[n-1]+\delta[n-2]
$$

This ultimately yields the following sequence of length $7+3-1=9$

$$
y[n]=x[n] * h[n]=\{2 \not / 2 j, 6+4 j, 7 / j, 13-4 j, 19+j, 10+4 j, 7-j, 5 \not / 4 j, 1 \nsucc j\}
$$

Your task is to determine the numerical values of each of the four symbols: b_{0}, b_{1}, b_{2}, and b_{3}. Explain and show all the steps in determining your answers. Please lay your work out nicely with logical ordering. Your work will be more important than your final answers.
Consider $y[n]$. We ignore L begzining values * L-i end values.

$$
\omega=\pi / 2
$$

$$
\begin{aligned}
& L=3 . \\
& \therefore \quad \tilde{y}[n]=\left\{13-4 j, 19+j, 10+4 j^{0}, 7-j\right\} \\
& h[n]=\{2,4,1\} \therefore H(z)=2+4 z^{-1}+z^{-2} \\
& \text { For } H_{N}(k), \quad \omega=\frac{2 \pi k}{4}=\frac{\pi k}{2} \\
& \omega=\pi \text {, } \\
& z=-1 \\
& w=0, \quad z=1 \\
& \omega=\frac{3 \pi}{2} ; \\
& k=0,1,2,3 \\
& z=e^{j / \pi / 2}=j \\
& z=-j
\end{aligned}
$$

$$
\begin{aligned}
\therefore H_{4}(0) & =7 \\
H_{4}(1) & =2+\frac{4}{9}+\frac{1}{j^{2}}=1-4 j \\
H_{4}(2) & =2-4+1=-1 \\
H_{4}(3) & =2+\frac{4}{(-j)}+\frac{1}{(-j)^{2}}=1+4 j
\end{aligned}
$$

Now, we will need the sinewave values,

$$
\begin{aligned}
& e^{j^{2 \pi k n} \frac{2}{4}}[u(n)-u(n-k))=S_{k}[n] \\
& k=0 \rightarrow S_{0}[n]=\{1,1,1,1\} \\
& k=1 \rightarrow S_{1}[n]=e^{j \frac{\pi n}{2}}=\{1, j,-1,-j\} \\
& k=2, \rightarrow S_{2}[n]=e^{j \pi n}=\{1,-1,1,-1\} \\
& k=3, \rightarrow S_{3}[n]=e^{j \frac{3 \pi n}{2}}=\{1,-j,-1, j\}
\end{aligned}
$$

Now, use:

This page left intentionally blank for student work.

$$
\begin{aligned}
& \therefore b=5 \\
& k=2,(-1) b_{2}=13-4 j-19-k+10+4 j-7+j \\
& \therefore \quad b_{2}=3 \\
& \therefore=3,(1+4 j) b_{3}=13-4 j+19 j-1-10-4 j-7 j-1 \\
& \therefore(1+4 j) b_{3}=1+4 j \\
& \therefore b_{3}=1
\end{aligned}
$$

shans,

$$
\left\lvert\, \begin{aligned}
& b_{0}=7 \\
& b_{1}=5 \\
& b_{2}=3 \\
& b_{3}=1
\end{aligned} \quad\right. \text { (Ans:) }
$$

Problem 2. Problem 1 is modified as follows. The only thing that is changed is that the filter is changed to (only the $n=2$ value is changed)

$$
h[n]=\{2,4,2\}=2 \delta[n]+4 \delta[n-1]+2 \delta[n-2]
$$

Note that $h[n]$ may also be expressed as two times the convolution of the sequence $\{1,1\}$ with itself as

$$
h[n]=\{2,4,2\}=2\{1,1\} *\{1,1\}
$$

Everything else is the same. We send the same four symbols values b_{k} as in Problem 1. We add a cyclic prefix of length 3 which effective creates a sum of sinewaves of length 7 as below, again, the same as in Problem 1.

$$
x[n]=\frac{1}{4} \sum_{k=0}^{3} b_{k} e^{j 2 \pi \frac{k}{4} n}\{u[n+3]-u[n-4]\}
$$

The sequence of length 7 above is convolved with the filter below of length 3

$$
h[n]=\{2,4,2\}=2 \delta[n]+4 \delta[n-1]+2 \delta[n-2]
$$

This ultimately yields the following sequence of length $7+3-1=9$

$$
y[n]=x[n] * h[n]=\{2+2 j, 6+4 j, 8,14-4 j, 20,14+4 j, 8,6-4 j, 2-2 j\}
$$

You do NOT have to determine the values of $b_{k}, k=0,1,2,3$. In fact, given this new filter and given ONLY the values of $y[n]$ listed above, you will NOT be able to determine one of the values of $b_{k}, k=0,1,2,3$.
TASK: Determine which one of the four values b_{0}, b_{1}, b_{2}, and b_{3} you are unable to determine, and explain why.

$$
\begin{aligned}
& H_{4}(z)=2+4 z^{-1}+2 z^{-2} \\
& H_{4}(0)=4+2+2=8 \\
& H_{4}(1)=2+\frac{4}{j}+\frac{2}{j}=-4 j \\
& H_{4}(2)=2-4+2=0!\leftarrow \\
& H_{4}(3)=+4 j\left(\because H(k)=H^{*}(N-k)\right)
\end{aligned}
$$

Since, $\quad b_{k}=\frac{\sum_{h=0}^{3} y[n] s_{k}^{\text {* }}[n]}{H_{N}(k)}$
b_{2} Cannot be determined! [o in the denominator]

Problem 3. [30 points] Consider a single-pole, analog all-pass filter with transfer function (Laplace Transform of impulse response)

$$
H_{a}(s)=\frac{s+p_{a}^{*}}{s-p_{a}}
$$

where the subscript a denotes analog. If one substitutes $s=j \Omega$ to get the frequency response (Fourier Transform of impulse response)

$$
H_{a}(\Omega)=\frac{j \Omega+p_{a}^{*}}{j \Omega-p_{a}}
$$

it is easy to show that the magnitude $\left|H_{a}(\Omega)\right|=1$ for all Ω.
(a) The transfer function for a digital filter is obtained via the bilinear transform

$$
s=\frac{z-1}{z+1}
$$

We discussed three properties of the bilinear transform in class. Which property of the bilinear transform guarantees us that an all-pass analog filter will be transformed into an all-pass digital filter?
(b) Consider the case where the pole is located at $p_{a}=-0.2+0.4 j$. Determine the values of the pole, p_{d}, and zero, z_{d}, of the digital filter obtained via the bilinear transform.
(i) Draw a pole-zero diagram for the resulting digital filter.
(ii) Is the resulting digital filter stable? Explain your answer.
(iii) Is the resulting digital filter an all-pass filter? Explain your answer.
(iv) What digital frequency is the analog frequency $\Omega=\sqrt{3}$ (in radians) mapped to?
(v) Determine and write the difference equation for the resulting digital filter.

This page left intentionally blank for student work.

$$
\begin{aligned}
& \therefore \frac{y(z)}{x(z)}=\frac{1-(1+j) z^{-1}}{1-(0.5+0.5 j) z-1} \\
&=y(n)=x(n)-(1+j) \times(n-1) \\
&+\left(\frac{1+j}{2}\right) y(n-1) \quad \text { (Ans:) }
\end{aligned}
$$

a) Since the $J \Omega$ imaginary axis gets mapped to the unit circe.

$$
\begin{aligned}
-p_{a}^{\pi} \dot{u} & =-[-0.2-0.4 j] \\
& =0.2+0.4 j \\
z & =\frac{1.2+0.4 j}{0.8-0.4 j}=\frac{3+j}{2-j}=\frac{5+5 j}{5}
\end{aligned}
$$

Burs, Zero at $1+j^{\circ}=$ Id pole at

$$
\frac{1}{2}+\frac{1}{2} j=p_{d}=(>)
$$

(Ii) The resulting digital fitter is stable as polis inside unit circe.
(ii) Regneting filter is indeed all pass

$$
\text { pole }=\frac{1}{(2000)}
$$

$$
\begin{aligned}
(i v) \quad \Omega & =\tan (\omega / 2) \\
\therefore \quad \Omega=\sqrt{3} \quad \Rightarrow \quad \omega & =2 \tan ^{-1}(\sqrt{3}) \\
& =\frac{2 \pi}{3} \pi
\end{aligned}
$$

(v) Resneting digital fitter,

$$
H(z)=\frac{z-(1+j)}{z-(0.5+0.5 j)}
$$

Problem 4. For all parts of this problem, $x[n]$ is the fine-length sinewave of length $L=8$ with frequency $\omega_{o}=\pi / 2$ defined below, and $h[n]$ is a causal filter of length $M=4$ which may be expressed in sequence form as $h[n]=\{1,2,-2,-1\}$.

$$
x[n]=\cos \left(\frac{\pi}{2} n\right)\{u[n]-u[n-8]\} \quad h[n]=\{1,2,-2,-1\}
$$

(a) Compute the linear convolution of $x[n]$ and $h[n]$. Indicate which points are the transient points (partial overlap) at the beginning and end, and also which points are "pure" sinewave (full overlap.)
(b) With $X_{N}(k)$ computed as the 8-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 8-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is formed. Determine the $N=8$ values of the 8-pt Inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$.
(c) Using your answer to (a), explain your answer to (b) by mathematically illustrating the time-domain aliasing effect.
(d) The product sequence $Y_{N}(k)=X_{N}(k) H_{N}(k)$, formed as directly above with $N=8$, is used in Eqn (1). Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$, computed according to Eqn (1) below:

$$
Y_{r}(\omega)=\sum_{k=0}^{N-1} Y_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)}
$$

a)

$$
\begin{aligned}
& x[n] \rightarrow\left\{\begin{array}{l}
1,0,-1,0,1,0,-1,0\} \\
i^{-j \frac{7}{2}} \\
\sum x(k) h(n-k)=\sum_{k=0}^{3} h(k) x(n-k)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { This page left intentionally blank for student work. } \\
& H_{8}(6)=1+2 e^{-j \frac{3 \pi}{2}-2 e^{-j 3 \pi}-i \cdot e} \\
& k=6, \omega=\frac{3 \pi}{2} \\
& =1+2 j+2+j=3+3 j \\
& \therefore Y_{g}(k)=\frac{(3-3 j)}{2} \cdot \delta \delta(k-2)+\frac{(3+3 j)}{2} \delta \delta(k-6) \\
& \therefore \quad y_{p}[n]=\left(\frac{3-3 j}{2}\right) e^{j \frac{\pi n}{2}}+\frac{(3+3 j)}{2} e^{j \frac{3 \pi n}{2}} \\
& =\{3,3,-3,-3,3,3,-3,-3\} \\
& \therefore Y_{\gamma}(\omega)=\frac{\left(3-3^{j}\right)}{2} \sin (4(\omega-\pi / 2)) e^{-j \frac{7}{2}\left(\omega-\frac{\pi}{2}\right)} \\
& +\frac{(3+3 j)}{2} \frac{\sin (4(\omega-3 \pi / 2))}{\sin \left(\frac{1}{2}\left(\omega-\frac{3 \pi}{2}\right)\right)} e^{-j \frac{7}{2}\left(\omega-\frac{3 \pi}{2}\right)}
\end{aligned}
$$

$z=$
(b) Call the 8 point inv DIF as, $y_{8}[n]$
Cast 3 points aliased into fist 3,

$$
\therefore \quad y_{8}[n]=\{3,3,-3,-3,3,3,-3,-3\}
$$

Now, $\quad x(n)=\frac{e^{j \frac{\pi n}{2}}+e^{-j \frac{\pi n}{2}}}{2} \quad 0 \leq n \leq 7$

$$
\begin{aligned}
& \frac{\pi}{2}=\frac{2 \pi(2)}{8}(\underline{N}=8 \\
& \therefore x_{\delta}(k)=\frac{8}{2} \delta(k-2)+\frac{\delta}{2} \delta(k-6) \\
& x_{\delta}(k)=4 \cdot[\delta(k-2)+\delta(k-6)] \\
& \therefore \quad Y_{\delta}(k)=x_{g}(k) H_{\delta}(k) \\
& =4 H_{\delta}(2) \delta(k-2)+4 H_{\delta}(6) \delta(k-6) \\
& H^{(\omega)}=1+2 e^{-j \omega}-2 e^{-2 j \omega}-e^{-3 j \omega} \\
& \begin{aligned}
& \therefore \omega=\frac{2 \pi k}{8}=\frac{\pi L}{4} \quad \therefore k=2 \Rightarrow \omega=\frac{\pi}{2} \\
& \therefore H_{8}(2)=1+2(-j)
\end{aligned} \\
& \therefore H_{\delta}(2)=1+2(-j) \\
& +2 \cdots \\
& =3-3 j
\end{aligned}
$$

$$
\begin{aligned}
\therefore e^{j \frac{3 \pi n}{2}} & =e^{-j \frac{\pi n}{2}} \\
\therefore y_{p}[n] & =\left(\frac{3-3 j}{2}\right) e^{j \frac{\pi n}{2}}+\frac{(3+3 j) e^{-j \frac{\pi}{2}}}{2} \\
& =3 \cos \frac{\pi n}{2}+3 \sin \frac{\pi n}{2} \\
& =\{3,3,-3,-3,3,3,-3,-3\}
\end{aligned}
$$

Hams, there was time domain dicoring!

$$
\begin{gathered}
y_{p}[n]=y[n]+y[n+8], \\
y(n) \rightarrow \quad 1,2-3,-3,3,+3,-3,-3,2,1,0 \\
y(n+8) \rightarrow \cdots, 010,3,3,-3,-3\}
\end{gathered}
$$

Problem 5. Consider the upsampler system below in Figure 1.

Figure 1.

(a) Draw block diagram of efficient implementation of the upsampler system in Fig. 1.
(b) Your answer to part (a) should involve the polyphase components of $h[n]$: $h_{0}[n]=h[3 n], h_{1}[n]=h[3 n+1]$, and $h_{2}[n]=h[3 n+2]$ and the DTFT of $h[n]$, denoted $H(\omega)$.
(c) Consider that the input to the system in Figure 1 is a sampled version of the analog signal in Figure 2. For the remaining parts of this problem, the input signal is as defined below where $x_{a}(t)$ is the analog signal in Figure 2. Assume that $1 / T_{s}=1$ is above the Nyquist rate for this signal. That is, even though this signal is not strictly bandlimited, assume that aliasing effects are negligible.

$$
x[n]=x_{a}\left(n T_{s}\right), \quad T_{s}=1
$$

Figure 2.
(i) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine the output $y[n]$ of the system in Figure 1, when $x[n]$ is input to the system. Write output in sequence form (indicating where $n=0$ is) OR do stem plot.
(ii) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine the output $y_{0}[n]=x[n] * h_{0}[n]$, when $x[n]$ is input to the filter $h_{0}[n]=h[3 n]$. Write output in sequence form (indicating where is $n=0$ OR do stem plot.
(iii) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine the output $y_{1}[n]=x[n] * h_{1}[n]$, when $x[n]$ is input to the filter $h_{1}[n]=h[3 n+1]$. Write output in sequence form (indicating where $n=0$ is) OR do stem plot.
(iv) For the ideal case where $h[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}$, determine the output $y_{2}[n]=x[n] * h_{2}[n]$, when $x[n]$ is input to the filter $h_{2}[n]=h[3 n+2]$. Write output in sequence form (indicating where $n=0$ is) OR do stem plot.
a) Efficient implementation is o-

$$
x[n]=\left\{\begin{array}{l}
d \\
0,3,6,9,9,9,9,9,9,9,6,3,0\} \\
\hline
\end{array}\right.
$$

(i) outpunt

$$
\begin{aligned}
& =\left\{\begin{array}{l}
0_{1}, 1,2,3, a, 4,5,6,7,8,9,9,9, a, a, a, a, a, \\
a, a, a, a, a, a, a, a, 9,9,9,8,7,6,5,4,3,2, \\
0,
\end{array},\right.
\end{aligned}
$$

(ii) outpant $=\left\{\begin{array}{l}1 \\ 0,3,6,9,9,9,9,9,9,9,6,3,0\end{array}\right]$
(İ) ourtport $=\{1,4,7,9,9,9,9,9,9,8,5,2,0\}$
(iv) output $=\left\{\begin{array}{l}d \\ 2,5,8,9,9,9,9,9,9,7,4,1,0\}\end{array}\right.$
(fractionaltime shiffs)

