
Digital Signal Processing I Final Exam Fall 2010
ECE538 13 Dec.. 2010

Cover Sheet

Test Duration: 120 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.

This test contains FOUR problems.
All work should be done in the blue book provided.

Do not return this test sheet, just return your blue book.
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Problem 1.

(a) Let x[n] and y[n] be real-valued sequences both of which are even-symmetric: x[n] =
x[−n] and y[n] = y[−n]. Under these conditions, prove that rxy[ℓ] = ryx[ℓ] for all ℓ.

(b) Express the autocorrelation sequence rzz[ℓ] for the complex-valued signal z[n] = x[n]+
jy[n] where x[n] and y[n] are real-valued sequences, in terms of rxx[ℓ], rxy[ℓ], ryx[ℓ],
and ryy[ℓ].

(c) Determine a closed-form expression for the autocorrelation sequence rxx[ℓ] for the signal
x[n] below.

x[n] =

{

sin(π
2
n)

πn

}

(1)

(d) Determine a closed-form expression for the autocorrelation sequence ryy[ℓ] for the signal
y[n] below.

y[n] = (−1)nx[n] = (−1)n
{

sin(π
2
n)

πn

}

(2)

(e) Determine a closed-form expression for the autocorrelation sequence rzz[ℓ] for the
complex-valued signal z[n] formed with x[n] and y[n] defined above as the real and
imaginary parts, respectively, as defined below. You must show all work and simplify

as much as possible.

z[n] = x[n] + jy[n] (3)

(f) Plot rzz[ℓ].
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Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to the
equation below:

Yr(ω) =
N−1
∑

k=0

YN(k)
sin

[

N
2

(

ω − 2πk
N

)]

N sin
[

1

2

(

ω − 2πk
N

)]e−jN−1

2
(ω− 2πk

N
) (4)

(a) Let x[n] be a finite-length sinewave of length L = 8 and h[n] be a discrete-time rect-
angular pulse of length M = 4 as defined below:

x[n] = ej
π

4
n {u[n]− u[n− 8]} h[n] = u[n]− u[n− 4]

(i) With XN (k) computed as the 16-pt DFT of x[n] and HN(k) computed as the
16-pt DFT of h[n], the product YN(k) = XN(k)HN(k) is used in Eqn (1) with
N = 16. Write a closed-form expression for the reconstructed spectrum Yr(ω).

(ii) With XN (k) computed as the 12-pt DFT of x[n] and HN(k) computed as the
12-pt DFT of h[n], the product YN(k) = XN(k)HN(k) is used in Eqn (1) with
N = 12. Write a closed-form expression for the reconstructed spectrum Yr(ω).

(iii) With XN (k) computed as the 8-pt DFT of x[n] and HN(k) computed as the 8-pt
DFT of h[n], the product YN(k) = XN(k)HN(k) is used in Eqn (1) with N = 8.
Write a closed-form expression for the reconstructed spectrum Yr(ω). You can

approximate sin
(

π
8

)

≈ π
8
.

(b) Let y[n] be a sine-window of length L = 16 as defined below. For all sub-parts of part
(b), YN(k) is computed as a 32-pt DFT of y[n] and used in Eqn (1) with N = 32.

y[n] = sin
(

π

16
(n + 0.5)

)

{u[n]− u[n− 16]}

(i) Write a closed-form expression for the resulting reconstructed spectrum Yr(ω).

(ii) What is the numerical value of YN(3)? That is, what is the numerical value of
the 32-pt DFT of y[n] for the value k = 3? (Note that y[n] is of length L = 16.)

(iii) What is the numerical value of YN(7)? That is, what is the numerical value of
the 32-pt DFT of y[n] for the value k = 7?

(iv) What is the numerical value of YN(0)? That is, what is the numerical value of

the 32-pt DFT of y[n] for the value k = 0? You can approximate sin
(

π
32

)

≈ π
32
.
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Problem 3.

Consider the following complex-valued Vestigial Sideband (VSB) filter.

h[n] = ej
π

3
nhLP [n]

LetHLP (ω) denote the DTFT (frequency response) of the filter hLP [n]. HLP (ω) is real-valued
and symmetric. For −π < ω < π, HLP (ω) is mathematically described as

HLP (ω) =











2, |ω| < π
4

1 + cos[6(|ω| − π
4
)], 3π

12
< |ω| < 5π

12

0, 5π
12

< |ω| < π

Note that for later purposes in this problem, we can break up h[n] into its real and imaginary
parts using Euler’s formula as h[n] = hR[n] + jhI [n], where:

hR[n] = Re{h[n]} = hLP [n] cos
(

π

3
n
)

hI [n] = Im{h[n]} = hLP [n] sin
(

π

3
n
)

(a) Plot the magnitude of the DTFT of h[n], H(ω), over −π < ω < π.

(b) Consider the following input signal

x[n] = 4
sin

(

π
3
n
)

πn

sin
(

π
4
n
)

πn

Plot the magnitude of the DTFT of x[n], X(ω), over −π < ω < π.

(c) The signal in part (b) is run through the filter in part (a) to produce the output y[n]

y[n] = x[n] ∗ h[n]

Plot the magnitude of the DTFT of y[n], Y (ω), over −π < ω < π.

(d) Consider the real part of the complex-valued filter h[n]. Using Euler’s formula, we have
that

hR[n] = Re{h[n]} = hLP [n] cos
(

π

3
n
)

Plot the magnitude of the DTFT of hR[n], HR(ω), over −π < ω < π.

(e) Consider the real part of the complex-valued signal y[n]. Since the input x[n] is real-
valued, from part (d) we have:

yR[n] = Re{y[n]} = x[n] ∗ hR[n]

Plot the magnitude of the DTFT of yR[n] over −π < ω < π.

(f) Consider the real-valued signal z[n] below, where yI [n] = Im{y[n]} = x[n] ∗ hI [n]:

z[n] = yR[n] cos
(

π

4
n
)

− yI [n] sin
(

π

4
n
)

Note that z[n] is the real part of y[n]ej
π

4
n. Plot the DTFT of z[n] over −π < ω < π.

(g) Draw a block diagram for a system for recovering the original signal x[n] from z[n]. If
you use a lowpass filter in your block diagram, you must specify both the passband
edge and the stopband edge.

4



Problem 4.

In the system below, the two analysis filters, h0[n] and h1[n], and the two synthesis filters,
f0[n] and f1[n], form a Quadrature Mirror Filter (QMF). Specifically,

h0[n] =
2β cos[(1 + β)π(n+ .5)/2]

π[1− 4β2(n+ .5)2]
+

sin[(1− β)π(n+ .5)/2]

π[(n + .5)− 4β2(n + .5)3]
,−∞ < n < ∞ with β = 0.5

(5)
h1[n] = (−1)nh0[n] f0[n] = h0[n] f1[n] = −h1[n]

The DTFT of the halfband filter h0[n] above may be expressed as follows:

H0(ω) =











ej
ω

2 , |ω| < π
4

ej
ω

2 cos[(|ω| − π
4
)], π

4
< |ω| < 3π

4

0, 3π
4
< |ω| < π

h   [n]

f   [n]

f  [n]

2

2

2

2

+

y[n]
h   [n]
0 0

1 1

x   [n]
0

x   [n]
1

y   [n]
0

y   [n]
1

x[n]

Consider the input signal x[n] = xrc[n] cos
(

π
2
n
)

where the DTFT of xrc[n], denoted Xrc(ω),
is given below:

Xrc(ω) =











2, |ω| < π
4

1 + cos[4(|ω| − π
4
)], π

4
< |ω| < π

2

0, π
2
< |ω| < π

THUS, the DTFT of the input signal isX(ω) = 1

2
Xrc

(

ω − π
2

)

+ 1

2
Xrc

(

ω + π
2

)

, where Xrc(ω)
is defined above.

HINT: The solution to problem is greatly simplified if you exploit the fact that the DTFT
of the input signal x[n] is such that X(ω) = X(ω − π).

(a) Plot the magnitude of the DTFT of x[n], X(ω), over −π < ω < π.

(b) Plot the magnitude of the DTFT of x0[n], X0(ω), over −π < ω < π.

(c) Plot the magnitude of the DTFT of x1[n], X1(ω), over −π < ω < π.

(d) Plot the magnitude of the DTFT of y0[n], Y0(ω), over −π < ω < π.

(e) Plot the magnitude of the DTFT of y1[n], Y1(ω), over −π < ω < π.

(f) Plot the magnitude of the DTFT of the final output y[n], Y (ω), over −π < ω < π.
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