Digital Signal Processing I Final Exam Fall 2009 **ECE538**

15 Dec.. 2009

Cover Sheet

Test Duration: 120 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **FIVE** problems. All work should be done in the blue book provided. Do not return this test sheet, just return your blue book. **Problem 1.** Consider a finite-length sinewave of the form below where k_o is an integer in the range $0 \le k_o \le N - 1$.

$$x[n] = e^{j2\pi\frac{k_0}{N}n} \{ u[n] - u[n-N] \}$$
(1)

In addition, h[n] is a causal FIR filter of length L, where L < N. In this problem y[n] is the linear convolution of the causal sinewave of length N in Equation (1) with a causal FIR filter of length L, where L < N.

$$y[n] = x[n] * h[n]$$

(a) The region $0 \le n \le L - 1$ corresponds to *partial overlap*. The convolution sum can be written as:

$$y[n] = \sum_{k=??}^{??} h[k]x[n-k] \quad partial \ overlap: \ 0 \le n \le L-1$$
(2)

Determine the upper and lower limits in the convolution sum above for $0 \le n \le L-1$.

(b) The region $L \le n \le N - 1$ corresponds to full overlap. The convolution sum is:

$$y[n] = \sum_{k=??}^{??} h[k]x[n-k] \quad full \ overlap: \ L \le n \le N-1$$
(3)

- (i) Determine the upper & lower limits in the convolution sum for $L \le n \le N 1$.
- (ii) Substituting x[n] in Eqn (1), show that for this range y[n] simplifies to:

$$y[n] = H_N(k_o)e^{j2\pi\frac{k_o}{N}n} \quad \text{for} \quad L \le n \le N - 1 \tag{4}$$

where $H_N(k)$ is the N-point DFT of h[n] evaluated at $k = k_o$. To get the points, you must show all work and explain all details.

(c) The region $N \le n \le N + L - 2$ corresponds to *partial overlap*. The convolution sum:

$$y[n] = \sum_{k=??}^{??} h[k]x[n-k] \quad partial \ overlap: \ N \le n \le N + L - 2 \tag{5}$$

Determine the upper & lower limits in the convolution sum for $N \le n \le N + L - 2$.

(d) Add the two regions of partial overlap at the beginning and end to form:

$$z[n] = y[n] + y[n+N] = \sum_{k=??}^{??} h[k]x[n-k] \quad \text{for: } 0 \le n \le L-1 \tag{6}$$

- (i) Determine the upper and lower limits in the convolution sum above.
- (ii) Substituting x[n] in Eqn (1), show that for this range z[n] simplifies to:

$$z[n] = y[n] + y[n+N] = H_N(k_o)e^{j2\pi\frac{k_o}{N}n} \quad \text{for } 0 \le n \le L-1$$
(7)

where $H_N(k)$ is the N-point DFT of h[n] evaluated at $k = k_o$ as defined previously. To get the points, you must show all work and explain all details.

(e) $y_N[n]$ is formed by computing $X_N(k)$ as an N-pt DFT of x[n] in Eqn 1, $H_N(k)$ as an N-pt DFT of h[n], and then $y_N[n]$ as the N-pt inverse DFT of $Y_N(k) = X_N(k)H_N(k)$. Write a closed-form expression for $y_N[n]$. Is $z[n] = y_N[n]$?

Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to Equation 1 below:

$$X_r(\omega) = \sum_{k=0}^{N-1} X_N(k) \frac{\sin\left[\frac{N}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]}{N\sin\left[\frac{1}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]} e^{-j\frac{N-1}{2}\left(\omega - \frac{2\pi k}{N}\right)}$$
(8)

(a) Let x[n] be a discrete-time rectangular pulse of length L = 12 as defined below:

$$x[n] = \{-1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1\}$$

- (i) $X_N(k)$ is computed as a 16-point DFT of x[n] and used in Eqn (1) with N = 16. Write a closed-form expression for the resulting reconstructed spectrum $X_r(\omega)$.
- (ii) $X_N(k)$ is computed as a 12-point DFT of x[n] and used in Eqn (1) with N = 12. Write a closed-form expression for the resulting reconstructed spectrum $X_r(\omega)$.
- (iii) $X_N(k)$ is computed as an 8-point DFT of x[n] and used in Eqn (1) with N = 8. That is, $X_N(k)$ is obtained by sampling the DTFT of x[n] at 8 equi-spaced frequencies between 0 and 2π . Write a closed-form expression for the resulting reconstructed spectrum $X_r(\omega)$.
- (b) Let x[n] be a discrete-time sinewave of length L = 12 as defined below. For all subparts of part (b), $X_N(k)$ is computed as a 12-pt DFT of x[n] and used in Eqn (1) with N = 12.

$$x[n] = \cos\left(\frac{\pi}{3}n\right) \left\{u[n] - u[n-12]\right\}$$

- (i) Write a closed-form expression for the resulting reconstructed spectrum $X_r(\omega)$.
- (ii) What is the numerical value of $X_r(\frac{\pi}{3})$? The answer is a number and you do not need a calculator to determine the value; this also applies to the next 2 parts.
- (iii) What is the numerical value of $X_r(\frac{5\pi}{3})$?
- (iv) What is the numerical value of $X_r(\frac{\pi}{2})$?

Problem 3. This problem is about Vestigial Sideband (VSB) Modulation where we transmit a small part of the negative portion of the spectrum along with the positive frequency portion of the spectrum. *Note: all signals and filters in this problem have zero-phase in the frequency domain.*

(a) Consider the following complex-valued filter.

$$h[n] = 16 \ e^{j\frac{7\pi}{16}n} \left\{ \frac{\sin\left(\frac{2\pi}{16}n\right)}{\pi n} \ \frac{\sin\left(\frac{7\pi}{16}n\right)}{\pi n} \right\}$$

Plot the DTFT of h[n], $H(\omega)$, over $-\pi < \omega < \pi$.

(b) For illustrative purposes, consider the following simple input signal

$$x[n] = \frac{\sin\left(\frac{3\pi}{4}n\right)}{\pi n}$$

Plot the DTFT of x[n], $X(\omega)$, over $-\pi < \omega < \pi$.

(c) The signal in part (b) is run through the filter in part (a) to produce the output y[n]

$$y[n] = x[n] * h[n]$$

Plot the DTFT of y[n], $Y(\omega)$, over $-\pi < \omega < \pi$.

(d) The real-part of the complex-valued signal y[n] may be expressed as

$$y_R[n] = Re\{y[n]\} = \frac{1}{2}\{y[n] + y^*[n]\}$$

Plot the DTFT of the complex-conjugate signal $y^*[n]$ over $-\pi < \omega < \pi$.

- (e) Sum your respective answers to parts (c) and (d), and divide by 2, to form the DTFT of $y_R[n]$, denoted $Y_R(\omega)$. Plot $Y_R(\omega)$ over $-\pi < \omega < \pi$.
- (f) Is your answer to part (e) equal to the DTFT of the original signal x[n]? That is, is $y_R[n] = x[n]$? Why or why not? Explain your answer.
- (g) The output of the filter in part (a) includes some of the frequency content of x[n] in the band $-\frac{\pi}{8} < \omega < 0$ in addition to the positive frequency portion of the signal in $0 < \omega < \pi$. Consider a more general case where the output of the filter h[n] includes some of the frequency content of x[n] in the band $-\Delta < \omega < 0$, in addition to the positive frequency portion of the signal in $0 < \omega < \pi$. In addition to the constraints $H(\omega) = 2$ over $\Delta < \omega < \pi$, and $H(\omega) = 0$ over $-\pi < \omega < -\Delta$, what condition does $H(\omega)$ have to satisfy over $-\Delta < \omega < \Delta$ in order that the real part of the output y[n] = x[n] * h[n] be equal to x[n]?

Figure 1(a). Analysis Section of Two-Stage Tree-Structured Filter Bank.

Figure 1(b). Synthesis Section of Two-Stage Tree-Structured Filter Bank.

Figure 2(a). Analysis Filter Bank.

Figure 2(b). Synthesis Filter Bank.

This problem is about synthesizing an M=3 channel nonuniform PR filter bank from a two stage tree-structured PR filter bank.

$$h_{LP}[n] = \{1, 1\} = u[n] - n[n-2]$$

 $h_{HP}[n] = (-1)^n h_{LP}[n]$

Also, $g_{LP}[n] = h_{LP}[n]$ and $g_{HP}[n] = -h_{HP}[n]$. The combination of the analysis filter pair, $\{H_{LP}(\omega), H_{HP}(\omega)\}$, and synthesis filter pair $\{G_{LP}(\omega), G_{HP}(\omega)\}$, form a two-channel PR filter bank.

- (a) Use Noble's First Identity to determine the analysis filters $H_m(\omega)$, m = 0, 1, 2, so that the system in Fig. 2(a) is equivalent to the system in Fig. 1(a).
 - (i) Write a time-domain expression for EACH of the three filters $h_m[n]$, m = 0, 1, 2.
 - (ii) Plot the frequency response for each of the three filters $H_m(\omega)$, m = 0, 1, 2.
- (b) Next, use Noble's Second Identity to express each synthesis filter, $G_m(\omega)$, $m = 0, 1, 2, \ldots$ in terms of $G_{LP}(\omega)$ and $G_{HP}(\omega)$, so that the system in Fig. 2(b) is equivalent to the system in Fig. 1(b).

(c) Plot the magnitude of
$$F(\omega) = \sum_{i=0}^{2} H_i(\omega) G_i(\omega)$$
 over $-\pi < \omega < \pi$.

Problem 5.

Consider the autoregressive AR(2) process generated via the difference equation

$$x[n] = x[n-1] - \frac{1}{2}x[n-2] + \nu[n]$$

where $\nu[n]$ is a stationary white noise process with variance $\sigma_w^2 = 5/2 = 2.5$. The first three autocorrelation values $(r_{xx}[m] = E\{x[n]x[n-m]\})$ for this AR process have the numerical values indicated below:

$$r_{xx}[0] = 6$$
 $r_{xx}[1] = 4$ $r_{xx}[2] = 1$

- (a) Determine the value of $r_{xx}[3]$.
- (b) Determine a simple, closed-form expression for the spectral density for x[n], $S_{xx}(\omega)$, which may be expressed as the DTFT of $r_{xx}[m]$:

$$S_{xx}(\omega) = \sum_{m=-\infty}^{\infty} r_{xx}[m]e^{-jm\omega}$$

(c) Consider the first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical value of the optimum predictor coefficient $a_1(1)$ and the corresponding minimum mean-square error.

(d) Consider the third-order predictor

$$\hat{x}[n] = -a_3(1)x[n-1] - a_3(2)x[n-2] - a_3(3)x[n-3]$$

Determine the numerical values of the optimum predictor coefficients $a_3(1)$, $a_3(2)$, and $a_3(3)$ and the corresponding minimum mean-square error.