Digital Signal Processing I ECE538
 Final Exam
 Fall 2009
 15 Dec.. 2009

Cover Sheet

Test Duration: 120 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains FIVE problems.
All work should be done in the blue book provided.
Do not return this test sheet, just return your blue book.

Problem 1. Consider a finite-length sinewave of the form below where k_{o} is an integer in the range $0 \leq k_{o} \leq N-1$.

$$
\begin{equation*}
x[n]=e^{j 2 \pi \frac{k_{0}}{N} n}\{u[n]-u[n-N]\} \tag{1}
\end{equation*}
$$

In addition, $h[n]$ is a causal FIR filter of length L, where $L<N$. In this problem $y[n]$ is the linear convolution of the causal sinewave of length N in Equation (1) with a causal FIR filter of length L, where $L<N$.

$$
y[n]=x[n] * h[n]
$$

(a) The region $0 \leq n \leq L-1$ corresponds to partial overlap. The convolution sum can be written as:

$$
\begin{equation*}
y[n]=\sum_{k=? ?}^{? ?} h[k] x[n-k] \quad \text { partial overlap: } 0 \leq n \leq L-1 \tag{2}
\end{equation*}
$$

Determine the upper and lower limits in the convolution sum above for $0 \leq n \leq L-1$.
(b) The region $L \leq n \leq N-1$ corresponds to full overlap. The convolution sum is:

$$
\begin{equation*}
y[n]=\sum_{k=? ?}^{? ?} h[k] x[n-k] \quad \text { full overlap: } L \leq n \leq N-1 \tag{3}
\end{equation*}
$$

(i) Determine the upper \& lower limits in the convolution sum for $L \leq n \leq N-1$.
(ii) Substituting $x[n]$ in Eqn (1), show that for this range $y[n]$ simplifies to:

$$
\begin{equation*}
y[n]=H_{N}\left(k_{o}\right) e^{j 2 \pi \frac{k_{o}}{N} n} \quad \text { for } \quad L \leq n \leq N-1 \tag{4}
\end{equation*}
$$

where $H_{N}(k)$ is the N-point DFT of $h[n]$ evaluated at $k=k_{o}$. To get the points, you must show all work and explain all details.
(c) The region $N \leq n \leq N+L-2$ corresponds to partial overlap. The convolution sum:

$$
\begin{equation*}
y[n]=\sum_{k=? ?}^{? ?} h[k] x[n-k] \quad \text { partial overlap: } \quad N \leq n \leq N+L-2 \tag{5}
\end{equation*}
$$

Determine the upper \& lower limits in the convolution sum for $N \leq n \leq N+L-2$.
(d) Add the two regions of partial overlap at the beginning and end to form:

$$
\begin{equation*}
z[n]=y[n]+y[n+N]=\sum_{k=? ?}^{? ?} h[k] x[n-k] \quad \text { for: } 0 \leq n \leq L-1 \tag{6}
\end{equation*}
$$

(i) Determine the upper and lower limits in the convolution sum above.
(ii) Substituting $x[n]$ in Eqn (1), show that for this range $z[n]$ simplifies to:

$$
\begin{equation*}
z[n]=y[n]+y[n+N]=H_{N}\left(k_{o}\right) e^{j 2 \pi \frac{k_{o}}{N} n} \quad \text { for } 0 \leq n \leq L-1 \tag{7}
\end{equation*}
$$

where $H_{N}(k)$ is the N-point DFT of $h[n]$ evaluated at $k=k_{o}$ as defined previously. To get the points, you must show all work and explain all details.
(e) $y_{N}[n]$ is formed by computing $X_{N}(k)$ as an N-pt DFT of $x[n]$ in Eqn $1, H_{N}(k)$ as an N-pt DFT of $h[n]$, and then $y_{N}[n]$ as the N-pt inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$. Write a closed-form expression for $y_{N}[n]$. Is $z[n]=y_{N}[n]$?

Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to Equation 1 below:

$$
\begin{equation*}
X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)} \tag{8}
\end{equation*}
$$

(a) Let $x[n]$ be a discrete-time rectangular pulse of length $L=12$ as defined below:

$$
x[n]=\{-1,-1,-1,-1,1,1,1,1,1,1,1,1\}
$$

(i) $X_{N}(k)$ is computed as a 16-point DFT of $x[n]$ and used in Eqn (1) with $N=16$. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(ii) $X_{N}(k)$ is computed as a 12-point DFT of $x[n]$ and used in Eqn (1) with $N=12$. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(iii) $X_{N}(k)$ is computed as an 8-point DFT of $x[n]$ and used in Eqn (1) with $N=$ 8. That is, $X_{N}(k)$ is obtained by sampling the DTFT of $x[n]$ at 8 equi-spaced frequencies between 0 and 2π. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(b) Let $x[n]$ be a discrete-time sinewave of length $L=12$ as defined below. For all subparts of part (b), $X_{N}(k)$ is computed as a 12 -pt DFT of $x[n]$ and used in Eqn (1) with $N=12$.

$$
x[n]=\cos \left(\frac{\pi}{3} n\right)\{u[n]-u[n-12]\}
$$

(i) Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(ii) What is the numerical value of $X_{r}\left(\frac{\pi}{3}\right)$? The answer is a number and you do not need a calculator to determine the value; this also applies to the next 2 parts.
(iii) What is the numerical value of $X_{r}\left(\frac{5 \pi}{3}\right)$?
(iv) What is the numerical value of $X_{r}\left(\frac{\pi}{2}\right)$?

Problem 3. This problem is about Vestigial Sideband (VSB) Modulation where we transmit a small part of the negative portion of the spectrum along with the positive frequency portion of the spectrum. Note: all signals and filters in this problem have zero-phase in the frequency domain.
(a) Consider the following complex-valued filter.

$$
h[n]=16 e^{j \frac{7 \pi}{16} n}\left\{\frac{\sin \left(\frac{2 \pi}{16} n\right)}{\pi n} \frac{\sin \left(\frac{7 \pi}{16} n\right)}{\pi n}\right\}
$$

Plot the DTFT of $h[n], H(\omega)$, over $-\pi<\omega<\pi$.
(b) For illustrative purposes, consider the following simple input signal

$$
x[n]=\frac{\sin \left(\frac{3 \pi}{4} n\right)}{\pi n}
$$

Plot the DTFT of $x[n], X(\omega)$, over $-\pi<\omega<\pi$.
(c) The signal in part (b) is run through the filter in part (a) to produce the output $y[n]$

$$
y[n]=x[n] * h[n]
$$

Plot the DTFT of $y[n], Y(\omega)$, over $-\pi<\omega<\pi$.
(d) The real-part of the complex-valued signal $y[n]$ may be expressed as

$$
y_{R}[n]=\operatorname{Re}\{y[n]\}=\frac{1}{2}\left\{y[n]+y^{*}[n]\right\}
$$

Plot the DTFT of the complex-conjugate signal $y^{*}[n]$ over $-\pi<\omega<\pi$.
(e) Sum your respective answers to parts (c) and (d), and divide by 2 , to form the DTFT of $y_{R}[n]$, denoted $Y_{R}(\omega)$. Plot $Y_{R}(\omega)$ over $-\pi<\omega<\pi$.
(f) Is your answer to part (e) equal to the DTFT of the original signal $x[n]$? That is, is $y_{R}[n]=x[n]$? Why or why not? Explain your answer.
(g) The output of the filter in part (a) includes some of the frequency content of $x[n]$ in the band $-\frac{\pi}{8}<\omega<0$ in addition to the positive frequency portion of the signal in $0<\omega<\pi$. Consider a more general case where the output of the filter $h[n]$ includes some of the frequency content of $x[n]$ in the band $-\Delta<\omega<0$, in addition to the positive frequency portion of the signal in $0<\omega<\pi$. In addition to the constraints $H(\omega)=2$ over $\Delta<\omega<\pi$, and $H(\omega)=0$ over $-\pi<\omega<-\Delta$, what condition does $H(\omega)$ have to satisfy over $-\Delta<\omega<\Delta$ in order that the real part of the output $y[n]=x[n] * h[n]$ be equal to $x[n]$?

Problem 4.

Figure 1(a). Analysis Section of Two-Stage Tree-Structured Filter Bank.

$\mathrm{y}[\mathrm{n}]$

 $\mathrm{G}_{\mathrm{HP}}(\omega)$

Figure 1(b). Synthesis Section of Two-Stage Tree-Structured Filter Bank.

Figure 2(a). Analysis Filter Bank.
Figure 2(b). Synthesis Filter Bank.
This problem is about synthesizing an $\mathrm{M}=3$ channel nonuniform PR filter bank from a two stage tree-structured PR filter bank.

$$
\begin{gathered}
h_{L P}[n]=\{1,1\}=u[n]-n[n-2] \\
h_{H P}[n]=(-1)^{n} h_{L P}[n]
\end{gathered}
$$

Also, $g_{L P}[n]=h_{L P}[n]$ and $g_{H P}[n]=-h_{H P}[n]$. The combination of the analysis filter pair, $\left\{H_{L P}(\omega), H_{H P}(\omega)\right\}$, and synthesis filter pair $\left\{G_{L P}(\omega), G_{H P}(\omega)\right\}$, form a two-channel PR filter bank.
(a) Use Noble's First Identity to determine the analysis filters $H_{m}(\omega), m=0,1,2$, so that the system in Fig. 2(a) is equivalent to the system in Fig. 1(a).
(i) Write a time-domain expression for EACH of the three filters $h_{m}[n], m=0,1,2$.
(ii) Plot the frequency response for each of the three filters $H_{m}(\omega), m=0,1,2$.
(b) Next, use Noble's Second Identity to express each synthesis filter, $G_{m}(\omega), m=0,1,2$, in terms of $G_{L P}(\omega)$ and $G_{H P}(\omega)$, so that the system in Fig. 2(b) is equivalent to the system in Fig. 1(b).
(c) Plot the magnitude of $F(\omega)=\sum_{i=0}^{2} H_{i}(\omega) G_{i}(\omega)$ over $-\pi<\omega<\pi$.

Problem 5.

Consider the autoregressive $\operatorname{AR}(2)$ process generated via the difference equation

$$
x[n]=x[n-1]-\frac{1}{2} x[n-2]+\nu[n]
$$

where $\nu[n]$ is a stationary white noise process with variance $\sigma_{w}^{2}=5 / 2=2.5$. The first three autocorrelation values ($r_{x x}[m]=E\{x[n] x[n-m]\}$) for this AR process have the numerical values indicated below:

$$
r_{x x}[0]=6 \quad r_{x x}[1]=4 \quad r_{x x}[2]=1
$$

(a) Determine the value of $r_{x x}[3]$.
(b) Determine a simple, closed-form expression for the spectral density for $x[n], S_{x x}(\omega)$, which may be expressed as the DTFT of $r_{x x}[m]$:

$$
S_{x x}(\omega)=\sum_{m=-\infty}^{\infty} r_{x x}[m] e^{-j m \omega}
$$

(c) Consider the first-order predictor

$$
\hat{x}[n]=-a_{1}(1) x[n-1]
$$

Determine the numerical value of the optimum predictor coefficient $a_{1}(1)$ and the corresponding minimum mean-square error.
(d) Consider the third-order predictor

$$
\hat{x}[n]=-a_{3}(1) x[n-1]-a_{3}(2) x[n-2]-a_{3}(3) x[n-3]
$$

Determine the numerical values of the optimum predictor coefficients $a_{3}(1), a_{3}(2)$, and $a_{3}(3)$ and the corresponding minimum mean-square error.

