$$
h=0,1, \cdots)^{n-1}
$$

Use of an FFT to compute an Inverse DFT:
DAT: $X_{N}(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{k_{n}}{N}}$
IDFT: $x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X_{N}(k) e^{j \frac{2 \pi \frac{k n}{N}}{}}$
Note:

$$
X^{*}[n]=\frac{1}{N} \sum_{k=0}^{N-1} X_{N}^{*}(k) e^{-j 2 \pi \frac{k n}{N}}
$$

Comparing from purely mathematical point of view:

