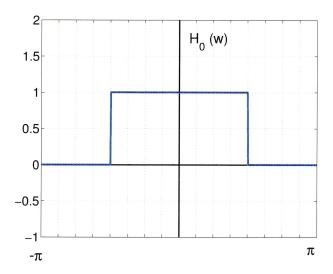
Problem 2. In Matlab Homework 2, you used Noble's Identities to convert the Tree-Structured subbander on the previous page to the regular maximally decimated subbander, obtaining products of the form:

$$H_k(\omega) = H_\ell^{(2)}(\omega)H_m^{(2)}(2\omega)H_n^{(2)}(4\omega) \quad k = 0, 1, ..., 7$$

where $\ell \in \{0,1\}$, $m \in \{0,1\}$, and $n \in \{0,1\}$, with $H_0^{(2)}(\omega)$ denoting the lowpass halfband filter below for the two-channel QMF and $H_1^{(2)}(\omega) = H_0^{(2)}(\omega - \pi)$. For this problem, $H_0^{(2)}(\omega)$ is the ideal lowpass filter below (note: a DTFT is always periodic with period 2π .)



You are required to fill in the table below. **FIRST** you should plot $H_0^{(2)}(2\omega)$ and $H_0^{(2)}(4\omega)$ on the next page, and then plot $H_1^{(2)}(\omega)$, $H_1^{(2)}(2\omega)$ and $H_1^{(2)}(4\omega)$ on the next page after that, in the space provided. In each plot, the abscissa range is from $-\pi$ to $+\pi$ and there is a tic mark and vertical dashed line at every integer multiple of $\pi/8$. These plots will help you fill in the table. Only fill in the positive

frequency band that is passed; the filters are real-valued and even-symmetric, so their respective frequency responses are real-valued and even-symmetric.

binses are real-valued and even-symmetric.
$$H_{1}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{I} \\ H_{1}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{I} \\ H_{1}^{(2)}(\omega)H_{1}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{1}^{(2)}(\omega)H_{1}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{1}^{(2)}(\omega)H_{1}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{1}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{1}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{1}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(4\omega) \quad \text{passes:} \ \, \exists \, \pi \, | \, \xi \in \mathcal{U} \in \mathcal{U} \\ H_{0}^{(2)}(\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^{(2)}(2\omega)H_{0}^$$

