Cover Sheet

Test Duration: 60 minutes.
Open Book but Closed Notes. One 8.5×11 crib sheet allowed Calculators NOT allowed.
This test contains two problems.
All work should be done on the blank pages provided.
Your answer to each part of the exam should be clearly labeled.

Problem 1. [50 pts] For all parts of this problem, let $x[n]$ be a discrete-time rectangular pulse of length $L=8$ and $h[n]$ be a discrete-time rectangular pulse of length $M=4$ as defined below:

$$
x[n]=u[n]-u[n-8] \quad h[n]=u[n]-u[n-4]
$$

Also, for all parts of this problem, the reconstructed spectrum is computed according to Equation 1 below:

$$
\begin{equation*}
Y_{r}(\omega)=\sum_{k=0}^{N-1} Y_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)} \tag{1}
\end{equation*}
$$

(a)-(i) With $X_{N}(k)$ computed as the 16 -pt DFT of $x[n]$ and $H_{N}(k)$ computed as the $16-\mathrm{pt}$ DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is formed. Determine the $N=16$ values of the 16-pt Inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$.
(a)-(ii) The product sequence, $Y_{N}(k)=X_{N}(k) H_{N}(k)$, formed as directly above with $N=16$, is used in Eqn (1). Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(b)-(i) With $X_{N}(k)$ computed as the 12-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 12-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is formed. Determine the $N=12$ values of the 12-pt Inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$.
(b)-(ii) The product sequence $Y_{N}(k)=X_{N}(k) H_{N}(k)$, formed as directly above with $N=12$, is used in Eqn (1). Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(c)-(i) With $X_{N}(k)$ computed as the 8 -pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 8-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is formed. Determine the $N=8$ values of the 8-pt Inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$.
(c)-(ii) The product sequence $Y_{N}(k)=X_{N}(k) H_{N}(k)$, formed as directly above with $N=8$, is used in Eqn (1). Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.

This page left intentionally blank for student work.

This page left intentionally blank for student work.

This page left intentionally blank for student work.

Problem 2. [50 points] Consider a causal FIR filter of length $M=8$ with impulse response as defined below:

$$
h_{p}[n]=\sum_{\ell=-\infty}^{\infty} \frac{\sin \left[\frac{5 \pi}{8}(n+\ell 8)\right]}{\pi(n+\ell 8)}\{u[n]-u[n-8]\}
$$

(a) Determine all 8 numerical values of the 8 -pt DFT of $h_{p}[n]$, denoted $H_{8}(k)$, for $0 \leq k \leq 7$. List the values clearly: $H_{8}(0)=?, H_{8}(1)=$?, $H_{8}(2)=$?, $H_{8}(3)=$?, $H_{8}(4)=?, H_{8}(5)=?, H_{8}(6)=?, H_{8}(7)=$?
(b) Consider the sequence $x[n]$ of length $L=8$ below, equal to a sum of 8 finite-length sinewaves.

$$
x[n]=\sum_{k=0}^{7} e^{j k \frac{2 \pi}{8} n}\{u[n]-u[n-8]\}
$$

$y_{8}[n]$ is formed by computing $X_{8}(k)$ as an 8 -pt DFT of $x[n], H_{8}(k)$ as an $8-\mathrm{pt}$ DFT of $h_{p}[n]$, and then $y_{8}[n]$ as the 8 -pt inverse DFT of $Y_{8}(k)=X_{8}(k) H_{8}(k)$. Express the result $y_{8}[n]$ as a weighted sum of finite-length sinewaves similar to how $x[n]$ is written above.

Next, consider a causal FIR filter of length $M=8$ with impulse response as defined below:

$$
h_{p}[n]=\sum_{\ell=-\infty}^{\infty} \frac{8}{3} \frac{\sin \left[\frac{5 \pi}{8}(n+\ell 8)\right]}{\pi(n+\ell 8)} \frac{\sin \left[\frac{3 \pi}{8}(n+\ell 8)\right]}{\pi(n+\ell 8)}\{u[n]-u[n-8]\}
$$

(c) Determine all 8 numerical values of the 8-pt DFT of $h_{p}[n]$, denoted $H_{8}(k)$, for $0 \leq k \leq 7$. List the values clearly: $H_{8}(0)=$?, $H_{8}(1)=$?, $H_{8}(2)=$?, $H_{8}(3)=$?, $H_{8}(4)=$?, $H_{8}(5)=$?, $H_{8}(6)=?, H_{8}(7)=$?
(d) Consider the sequence $x[n]$ of length $L=8$ below, equal to a sum of 8 finite-length sinewaves.

$$
x[n]=\sum_{k=0}^{7} e^{j k \frac{2 \pi}{8} n}\{u[n]-u[n-8]\}
$$

$y_{8}[n]$ is formed by computing $X_{8}(k)$ as an 8 -pt DFT of $x[n], H_{8}(k)$ as an $8-\mathrm{pt}$ DFT of $h_{p}[n]$, and then $y_{8}[n]$ as the 8 -pt inverse DFT of $Y_{8}(k)=X_{8}(k) H_{8}(k)$. Express the result $y_{8}[n]$ as a weighted sum of finite-length sinewaves similar to how $x[n]$ is written above.

This page left intentionally blank for student work.

This page left intentionally blank for student work.

This page left intentionally blank for student work.

