30 Nov. 2011 Fall 2011 30 Nov. 2011

Cover Sheet

WRITE YOUR NAME ON EACH EXAM SHEET

Test Duration: 60 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains two problems.
All work should be done in the space provided.
Do not just write answers; provide concise reasoning for each answer.

Problem 1. Let $x[n]$ be a discrete-time rectangular pulse of length $L=5$ and $h[n]$ be a discrete-time rectangular pulse of length $M=3$ as defined below:

$$
x[n]=u[n]-u[n-5] \quad h[n]=u[n]-u[n-3]
$$

(a) With $X_{N}(k)$ computed as the 5-pt DFT of $x[n]=u[n]-u[n-5]$ and $H_{N}(k)$ computed as the 5 -pt DFT of $h[n]=u[n]-u[n-3]$. The 5 -point sequence $y_{5}[n]$ is computed as the 5-pt inverse DFT of the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$. Write out the 5 numerical values of $y_{5}[n]$ in sequence form as $\left\{y_{5}[0], y_{5}[1], y_{5}[2], y_{5}[3], y_{5}[4]\right\}$.
(b) With $X_{N}(k)$ computed as the 8-pt DFT of $x[n]=u[n]-u[n-5]$ and $H_{N}(k)$ computed as the 8 -pt DFT of $h[n]=u[n]-u[n-3]$. The 8 -point sequence $y_{8}[n]$ is computed as the 8-pt inverse DFT of the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$. Write out the 8 numerical values of $y_{8}[n]$ in sequence form.
(c) With $X_{N}(k)$ computed as the 10-pt DFT of $x[n]=u[n]-u[n-5]$ and $H_{N}(k)$ computed as the 10 -pt DFT of $h[n]=u[n]-u[n-3]$. The 10 -point sequence $y_{10}[n]$ is computed as the $10-\mathrm{pt}$ inverse DFT of the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$. Write out the 10 numerical values of $y_{10}[n]$ in sequence form.

Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to the equation below:

$$
\begin{equation*}
Y_{r}(\omega)=\sum_{k=0}^{N-1} Y_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)} \tag{1}
\end{equation*}
$$

Let $x[n]$ be a finite-length sinewave of length $L=8$ and $h[n]$ be a discrete-time rectangular pulse of length $M=5$ as defined below:

$$
x[n]=e^{j \frac{\pi}{2} n}\{u[n]-u[n-8]\} \quad h[n]=u[n]-u[n-5]
$$

(a) With $X_{N}(k)$ computed as the 16-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 16-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=16$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(b) With $X_{N}(k)$ computed as the 12-pt DFT of $x[n]=e^{j \frac{\pi}{2} n}\{u[n]-u[n-8]\}$ and $H_{N}(k)$ computed as the 12 -pt DFT of $h[n]=u[n]-u[n-5]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=12$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(c) The answer to this part will be useful in determining the answer to part (d). $X_{N}(k)$ computed as the 8 -pt DFT of $x[n]=e^{j \frac{\pi}{2} n}\{u[n]-u[n-8]\}$ and $H_{N}(k)$ computed as the 8-pt DFT of $h[n]=u[n]-u[n-5]$. Develop and delineate your answers to each of the four steps below in the space below. Simplify each answer as much as possible.
(i) Determine a closed-form expression for the 8 -pt DFT, $X_{N}(k)$, of $x[n]=e^{j \frac{\pi}{2} n}\{u[n]-u[n-8]\}$.
(ii) Determine a closed-form expression for the 8-pt DFT, $H_{N}(k)$, of $h[n]=\{u[n]-u[n-5]\}$.
(iii) Determine a closed-form expression for the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$.
(iv) Determine a simple, closed-form expression for $y_{8}[n]$ equal to the $8-\mathrm{pt}$ inverse DFT of $Y_{N}(k)=X_{N}(k) H_{N}(k)$. Note that $\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\sin \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$.
(d) With $X_{N}(k)$ computed as the 8-pt DFT of $x[n]=e^{j \frac{\pi}{2} n}\{u[n]-u[n-8]\}$ and $H_{N}(k)$ computed as the 8-pt DFT of $h[n]=u[n]-u[n-5]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=8$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$. Note that $\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\sin \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$.

