NAME: Digital Signal Processing I Session 40

Exam 3 30 Nov. 2011 Fall 2011 30 Nov. 2011

Cover Sheet

WRITE YOUR NAME ON EACH EXAM SHEET

Test Duration: 60 minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains **two** problems. All work should be done in the space provided. Do **not** just write answers; provide concise reasoning for each answer. **Problem 1.** Let x[n] be a discrete-time rectangular pulse of length L = 5 and h[n] be a discrete-time rectangular pulse of length M = 3 as defined below:

$$x[n] = u[n] - u[n-5] \qquad h[n] = u[n] - u[n-3]$$

(a) With $X_N(k)$ computed as the 5-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 5-pt DFT of h[n] = u[n] - u[n-3]. The 5-point sequence $y_5[n]$ is computed as the 5-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 5 numerical values of $y_5[n]$ in sequence form as $\{y_5[0], y_5[1], y_5[2], y_5[3], y_5[4]\}$. (b) With $X_N(k)$ computed as the 8-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] - u[n-3]. The 8-point sequence $y_8[n]$ is computed as the 8-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 8 numerical values of $y_8[n]$ in sequence form. (c) With $X_N(k)$ computed as the 10-pt DFT of x[n] = u[n] - u[n-5] and $H_N(k)$ computed as the 10-pt DFT of h[n] = u[n] - u[n-3]. The 10-point sequence $y_{10}[n]$ is computed as the 10-pt inverse DFT of the product $Y_N(k) = X_N(k)H_N(k)$. Write out the 10 numerical values of $y_{10}[n]$ in sequence form.

Problem 2.

For all parts of this problem, the reconstructed spectrum is computed according to the equation below:

$$Y_r(\omega) = \sum_{k=0}^{N-1} Y_N(k) \frac{\sin\left[\frac{N}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]}{N\sin\left[\frac{1}{2}\left(\omega - \frac{2\pi k}{N}\right)\right]} e^{-j\frac{N-1}{2}\left(\omega - \frac{2\pi k}{N}\right)}$$
(1)

Let x[n] be a finite-length sinewave of length L = 8 and h[n] be a discrete-time rectangular pulse of length M = 5 as defined below:

$$x[n] = e^{j\frac{\pi}{2}n} \{ u[n] - u[n-8] \} \qquad h[n] = u[n] - u[n-5]$$

(a) With $X_N(k)$ computed as the 16-pt DFT of x[n] and $H_N(k)$ computed as the 16-pt DFT of h[n], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N = 16. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$.

(b) With $X_N(k)$ computed as the 12-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] - u[n-8]\}$ and $H_N(k)$ computed as the 12-pt DFT of h[n] = u[n] - u[n-5], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N = 12. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$.

- (c) The answer to this part will be useful in determining the answer to part (d). $X_N(k)$ computed as the 8-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] u[n-8]\}$ and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] u[n-5]. Develop and delineate your answers to each of the four steps below in the space below. Simplify each answer as much as possible.
 - (i) Determine a closed-form expression for the 8-pt DFT, $X_N(k)$, of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] u[n-8]\}$.
 - (ii) Determine a closed-form expression for the 8-pt DFT, $H_N(k)$, of $h[n] = \{u[n] u[n-5]\}$.
 - (iii) Determine a closed-form expression for the product $Y_N(k) = X_N(k)H_N(k)$.
 - (iv) Determine a simple, closed-form expression for $y_8[n]$ equal to the 8-pt inverse DFT of $Y_N(k) = X_N(k)H_N(k)$. Note that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ and $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

(d) With $X_N(k)$ computed as the 8-pt DFT of $x[n] = e^{j\frac{\pi}{2}n} \{u[n] - u[n-8]\}$ and $H_N(k)$ computed as the 8-pt DFT of h[n] = u[n] - u[n-5], the product $Y_N(k) = X_N(k)H_N(k)$ is used in Eqn (1) with N = 8. Write a closed-form expression for the reconstructed spectrum $Y_r(\omega)$. Note that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ and $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.