Digital Signal Processing I Session 41

Exam 3

Fall 2010
3 Dec. 2010

Cover Sheet

Test Duration: 60 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains two problems.
All work should be done on blank 8.5 " x 11 " white sheets of paper.
Do not return this test sheet, just return your answer sheets.

Problem 1. [65 pts]

For all parts of this problem, the reconstructed spectrum is computed according to Equation 1 below:

$$
\begin{equation*}
Y_{r}(\omega)=\sum_{k=0}^{N-1} Y_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)} \tag{1}
\end{equation*}
$$

(a) Let $x[n]$ be a discrete-time rectangular pulse of length $L=5$ and $h[n]$ be a discrete-time rectangular pulse of length $M=3$ as defined below:

$$
x[n]=u[n]-u[n-5] \quad h[n]=u[n]-u[n-3]
$$

(i) With $X_{N}(k)$ computed as the 12-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 12-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=12$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(ii) With $X_{N}(k)$ computed as the 8-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 8-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=8$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(iii) With $X_{N}(k)$ computed as the 5-pt DFT of $x[n]$ and $H_{N}(k)$ computed as the 5-pt DFT of $h[n]$, the product $Y_{N}(k)=X_{N}(k) H_{N}(k)$ is used in Eqn (1) with $N=5$. Write a closed-form expression for the reconstructed spectrum $Y_{r}(\omega)$.
(b) Let $y[n]$ be a sine-window of length $L=8$ as defined below. For all sub-parts of part (b), $Y_{N}(k)$ is computed as a 16-pt DFT of $y[n]$ and used in Eqn (1) with $N=16$.

$$
y[n]=\sin \left(\frac{\pi}{8}(n+0.5)\right)\{u[n]-u[n-8]\}
$$

(i) Write a closed-form expression for the resulting reconstructed spectrum $Y_{r}(\omega)$.
(ii) What is the numerical value of $Y_{N}(3)$? That is, what is the numerical value of the 16 -pt DFT of $y[n]$ for the value $k=3$? (Note that $y[n]$ is of length $L=8$.)
(iii) What is the numerical value of $Y_{N}(5)$? That is, what is the numerical value of the 16 -pt DFT of $y[n]$ for the value $k=5$?
(iv) What is the numerical value of $Y_{N}(0)$? That is, what is the numerical value of the 16 -pt DFT of $y[n]$ for the value $k=0$? You can approximate $\sin \left(\frac{\pi}{16}\right) \approx \frac{\pi}{16}$.

PROBLEM 2 IS ON THE NEXT PAGE

Digital Signal Processing I

Problem 2. [35 points] Consider a causal FIR filter of length $M=3$ with impulse response starting at $n=0$:

$$
h[n]=\{1,2,1\}
$$

Note that it may be helpful to realize that $h[n]=\{1,1\} *\{1,1\}$.
(a) Provide a closed-form expression for the 8-pt DFT of $h[n]$, denoted $H_{8}(k)$, as a function of k. Simplify as much as possible.
(b) Consider the sequence $x[n]$ of length $L=8$ below, equal to a sum of several finite-length sinewaves.

$$
x[n]=\left[2 \cos \left(\frac{\pi}{4} n\right)+3 \cos \left(\frac{\pi}{2} n\right)+4 \cos (\pi n)\right]\{u[n]-u[n-8]\}
$$

$y_{8}[n]$ is formed by computing $X_{8}(k)$ as an 8 -pt DFT of $x[n], H_{8}(k)$ as an $8-$ pt DFT of $h[n]$, and then $y_{8}[n]$ as the 8 -pt inverse DFT of $Y_{8}(k)=X_{8}(k) H_{8}(k)$. Express the result $y_{8}[n]$ as a weighted sum of finite-length sinewaves similar to how $x[n]$ is written above.

Note: These may be useful to you: $\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$, and $\cos \left(\frac{\pi}{2}\right)=0$.

