Digital Signal Processing I Session 41

Exam 3

 Fall 2009 4 Dec. 2009
Cover Sheet

Test Duration: 50 minutes.
Open Book but Closed Notes.
Calculators NOT allowed.
This test contains two problems.
All work should be done on blank $8.5 " \times 11$ " white sheets of paper (NOT provided).
Do not return this test sheet, just return your answer sheets.

Digital Signal Processing I

Problem 1. [65 pts]

For all parts of this problem, the reconstructed spectrum is computed according to Equation 1 below:

$$
\begin{equation*}
X_{r}(\omega)=\sum_{k=0}^{N-1} X_{N}(k) \frac{\sin \left[\frac{N}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]}{N \sin \left[\frac{1}{2}\left(\omega-\frac{2 \pi k}{N}\right)\right]} e^{-j \frac{N-1}{2}\left(\omega-\frac{2 \pi k}{N}\right)} \tag{1}
\end{equation*}
$$

(a) Let $x[n]$ be a discrete-time rectangular pulse of length $L=12$ as defined below:

$$
x[n]=u[n]-u[n-12]
$$

(i) $X_{N}(k)$ is computed as a 16-point DFT of $x[n]$ and used in Eqn (1) with $N=16$. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(ii) $X_{N}(k)$ is computed as a 12-point DFT of $x[n]$ and used in Eqn (1) with $N=12$. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(iii) $X_{N}(k)$ is computed as an 8-point DFT of $x[n]$ and used in Eqn (1) with $N=$ 8. That is, $X_{N}(k)$ is obtained by sampling the DTFT of $x[n]$ at 8 equi-spaced frequencies between 0 and 2π. Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(b) Let $x[n]$ be a discrete-time sinewave of length $L=16$ as defined below. For all subparts of part (b), $X_{N}(k)$ is computed as a 16-pt DFT of $x[n]$ and used in Eqn (1) with $N=16$.

$$
x[n]=\cos \left(\frac{\pi}{4} n\right)\{u[n]-u[n-16]\}
$$

(i) Write a closed-form expression for the resulting reconstructed spectrum $X_{r}(\omega)$.
(ii) What is the numerical value of $X_{r}\left(\frac{\pi}{8}\right)$? The answer is a number and you do not need a calculator to determine the value; this also applies to the next 2 parts.
(iii) What is the numerical value of $X_{r}\left(\frac{\pi}{4}\right)$?
(iv) What is the numerical value of $X_{r}\left(\frac{7 \pi}{4}\right)$?

Problem 2. [35 points] Consider a causal FIR filter of length $M=3$ with impulse response

$$
h[n]=\{1,-2,1\}
$$

(a) Provide a closed-form expression for the 8-pt DFT of $h[n]$, denoted $H_{8}(k)$, as a function of k. Simplify as much as possible.
(b) Consider the sequence $x[n]$ of length $L=8$ below, equal to a sum of several finite-length sinewaves.

$$
x[n]=\left[3+\cos \left(\frac{\pi}{2} n\right)+2 \cos (\pi n)\right]\{u[n]-u[n-8]\}
$$

$y_{8}[n]$ is formed by computing $X_{8}(k)$ as an 8 -pt DFT of $x[n], H_{8}(k)$ as an 8-pt DFT of $h[n]$, and then $y_{8}[n]$ as the 8 -pt inverse DFT of $Y_{8}(k)=X_{8}(k) H_{8}(k)$. Express the result $y_{8}[n]$ as a weighted sum of finite-length sinewaves similar to how $x[n]$ is written above.

