Digital Signal Processing I Session 41

Exam 3 Fall 2007 30 Nov. 2007

Cover Sheet

Test Duration: 75 minutes. Open Book but Closed Notes. Calculators allowed. This test contains **three** problems. All work should be done in the blue books provided. Do **not** return this test sheet, just return the blue books.

Digital Signal Processing I Session 41

Exam 3 Fall 2007 30 Nov. 2007

Problem 1. [30 pts]

Let x[n] be of length L = 4, i.e., x[n] = 0 for n < 0 and $n \ge 4$ and h[n] be of length M = 5, i.e., h[n] = 0 for n < 0 and $n \ge 5$. Let $X_6(k)$ and $H_6(k)$ denote 6-point DFT's of x[n] and h[n], respectively. The 6-point inverse DFT of the product $Y_6(k) = X_6(k)H_6(k)$, denoted $y_6[n]$, produces the following values:

n	0	1	2	3	4	5
$y_6[n]$	3	3	3	4	4	3

Let $X_5(k)$ and $H_5(k)$ denote the 5-point DFT's of the aforementioned sequences x[n] and h[n]. The 5-point inverse DFT of the product $Y_5(k) = X_5(k)H_5(k)$, denoted $y_5[n]$, produces the following values:

n	0	1	2	3	4
$y_5[n]$	4	4	4	4	4

Given $y_6[n]$ and $y_5[n]$, find the **linear** convolution of x[n] and h[n], i. e., list all of the numerical values of y[n] = x[n] * h[n].

Problem 2. [30 points]

Consider the autoregressive AR(2) process generated via the difference equation

$$x[n] = x[n-1] - \frac{1}{2}x[n-2] + \nu[n]$$

where $\nu[n]$ is a stationary white noise process with variance $\sigma_w^2 = 5/2 = 2.5$. (The value of σ_w^2 was chosen so that the autocorrelation values requested in part (a) are whole numbers.)

- (a) Determine the numerical values of $r_{xx}[0]$, $r_{xx}[1]$, $r_{xx}[2]$, where $r_{xx}[m]$ is the autocorrelation sequence $r_{xx}[m] = E\{x[n]x[n-m]\}$. Then determine the value of $r_{xx}[3]$.
- (b) Determine a simple, closed-form expression for the spectral density for x[n], $S_{xx}(\omega)$, which may be expressed as the DTFT of $r_{xx}[m]$:

$$S_{xx}(\omega) = \sum_{m=-\infty}^{\infty} r_{xx}[m]e^{-jm\omega}$$

(c) Consider the first-order predictor

$$\hat{x}[n] = -a_1(1)x[n-1]$$

Determine the numerical value of the optimum predictor coefficient $a_1(1)$ and the corresponding minimum mean-square error.

(d) Consider the third-order predictor

$$\hat{x}[n] = -a_3(1)x[n-1] - a_3(2)x[n-2] - a_3(3)x[n-3]$$

Determine the numerical values of the optimum predictor coefficients $a_3(1)$, $a_3(2)$, and $a_3(3)$ and the corresponding minimum mean-square error.

Problem 3. [30 points]

As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed into two sequences of length 4 as

$$f_0[n] = x[2n], \quad n = 0, 1, 2, 3$$
 $f_1[n] = x[2n+1], \quad n = 0, 1, 2, 3$

We compute a 4 -pt. DFT of each of these two sequences as

$$\begin{array}{ccc} \text{DFT} & \text{DFT} \\ f_0[n] & \longleftrightarrow & F_0[k] & & f_1[n] & \longleftrightarrow & F_1[k] \\ & 4 & & 4 \end{array}$$

The specific values of $F_0[k]$ and $F_1[k]$, k = 0, 1, 2, 3, obtained from the length N = 8 sequence in question are listed in the Table below.

k	0	1	2	3
$F_0[k]$	0	4	0	0
$F_1[k]$	0	$-\sqrt{2}(2+2j)$	0	0
W_8^k	1	$\frac{1}{\sqrt{2}}(1-j)$	-j	$-\frac{1}{\sqrt{2}}(1+j)$

- (20 pts) From the values of $F_0[k]$ and $F_1[k]$, k = 0, 1, 2, 3, and the values of $W_8^k = e^{-j\frac{2\pi}{8}k}$, k = 0, 1, 2, 3, provided in the Table, determine the numerical values of the actual N = 8-pt. DFT of x[n] denoted $X_8[k]$ for k = 0, 1, 2, 3, 4, 5, 6, 7.
- (10 pts) The underlying length N = 8 sequence x[n] may be expressed as

$$x[n] = \cos\left(2\pi \frac{k_1}{8}n\right) + j\sin\left(2\pi \frac{k_2}{8}n\right), \ n = 0, 1, ..., 7.$$

where k_1 and k_2 are both integers between 0 and 7, that is, $k_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}, i = 1, 2$. Given the values of $X_8[k]$ for k = 0, 1, ..., 7 determined in part (a), determine the numerical values of k_1 and k_2 .