Digital Signal Processing I Session 41

Exam 3

Fall 2007
30 Nov. 2007

Cover Sheet

Test Duration: 75 minutes.
Open Book but Closed Notes.
Calculators allowed.
This test contains three problems.
All work should be done in the blue books provided.
Do not return this test sheet, just return the blue books.

Digital Signal Processing I Session 41

Problem 1. [30 pts]
Let $x[n]$ be of length $L=4$, i.e., $x[n]=0$ for $n<0$ and $n \geq 4$ and $h[n]$ be of length $M=5$, i.e., $h[n]=0$ for $n<0$ and $n \geq 5$. Let $X_{6}(k)$ and $H_{6}(k)$ denote 6-point DFT's of $x[n]$ and $\mathrm{h}[\mathrm{n}]$, respectively. The 6 -point inverse DFT of the product $Y_{6}(k)=X_{6}(k) H_{6}(k)$, denoted $y_{6}[n]$, produces the following values:

n	0	1	2	3	4	5
$y_{6}[n]$	3	3	3	4	4	3

Let $X_{5}(k)$ and $H_{5}(k)$ denote the 5 -point DFT's of the aforementioned sequences $x[n]$ and $h[n]$. The 5 -point inverse DFT of the product $Y_{5}(k)=X_{5}(k) H_{5}(k)$, denoted $y_{5}[n]$, produces the following values:

n	0	1	2	3	4
$y_{5}[n]$	4	4	4	4	4

Given $y_{6}[n]$ and $y_{5}[n]$, find the linear convolution of $x[n]$ and $h[n]$, i. e., list all of the numerical values of $y[n]=x[n] * h[n]$.

Problem 2. [30 points]
Consider the autoregressive $\operatorname{AR}(2)$ process generated via the difference equation

$$
x[n]=x[n-1]-\frac{1}{2} x[n-2]+\nu[n]
$$

where $\nu[n]$ is a stationary white noise process with variance $\sigma_{w}^{2}=5 / 2=2.5$. (The value of σ_{w}^{2} was chosen so that the autocorrelation values requested in part (a) are whole numbers.)
(a) Determine the numerical values of $r_{x x}[0], r_{x x}[1], r_{x x}[2]$, where $r_{x x}[m]$ is the autocorrelation sequence $r_{x x}[m]=E\{x[n] x[n-m]\}$. Then determine the value of $r_{x x}[3]$.
(b) Determine a simple, closed-form expression for the spectral density for $x[n], S_{x x}(\omega)$, which may be expressed as the DTFT of $r_{x x}[m]$:

$$
S_{x x}(\omega)=\sum_{m=-\infty}^{\infty} r_{x x}[m] e^{-j m \omega}
$$

(c) Consider the first-order predictor

$$
\hat{x}[n]=-a_{1}(1) x[n-1]
$$

Determine the numerical value of the optimum predictor coefficient $a_{1}(1)$ and the corresponding minimum mean-square error.
(d) Consider the third-order predictor

$$
\hat{x}[n]=-a_{3}(1) x[n-1]-a_{3}(2) x[n-2]-a_{3}(3) x[n-3]
$$

Determine the numerical values of the optimum predictor coefficients $a_{3}(1), a_{3}(2)$, and $a_{3}(3)$ and the corresponding minimum mean-square error.

Problem 3. [30 points]
As part of the first stage in a radix 2 FFT, a sequence $x[n]$ of length $N=8$ is decomposed into two sequences of length 4 as

$$
f_{0}[n]=x[2 n], \quad n=0,1,2,3 \quad f_{1}[n]=x[2 n+1], \quad n=0,1,2,3
$$

We compute a 4 -pt. DFT of each of these two sequences as
$f_{0}[n] \underset{4}{\longleftrightarrow} F_{0}[k]$
$f_{1}[n] \underset{4}{\longleftrightarrow} F_{1}[k]$

The specific values of $F_{0}[k]$ and $F_{1}[k], k=0,1,2,3$, obtained from the length $N=8$ sequence in question are listed in the Table below.

k	0	1	2	3
$F_{0}[k]$	0	4	0	0
$F_{1}[k]$	0	$-\sqrt{2}(2+2 j)$	0	0
W_{8}^{k}	1	$\frac{1}{\sqrt{2}}(1-j)$	-j	$-\frac{1}{\sqrt{2}}(1+j)$

(20 pts) From the values of $F_{0}[k]$ and $F_{1}[k], k=0,1,2,3$, and the values of $W_{8}^{k}=e^{-j \frac{2 \pi}{8} k}$, $k=0,1,2,3$, provided in the Table, determine the numerical values of the actual $N=8$-pt. DFT of $x[n]$ denoted $X_{8}[k]$ for $k=0,1,2,3,4,5,6,7$.
(10 pts) The underlying length $N=8$ sequence $x[n]$ may be expressed as

$$
x[n]=\cos \left(2 \pi \frac{k_{1}}{8} n\right)+j \sin \left(2 \pi \frac{k_{2}}{8} n\right), \quad n=0,1, \ldots, 7 .
$$

where k_{1} and k_{2} are both integers between 0 and 7 , that is, $k_{i} \in\{0,1,2,3,4,5,6,7\}, i=$ 1,2 . Given the values of $X_{8}[k]$ for $k=0,1, \ldots, 7$ determined in part (a), determine the numerical values of k_{1} and k_{2}.

