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Problem 1. [30 pts]
Let x[n] be of length L = 4, i.e., x[n] = 0 for n < 0 and n ≥ 4 and h[n] be of length

M = 5, i.e., h[n] = 0 for n < 0 and n ≥ 5. Let X6(k) and H6(k) denote 6-point DFT’s of
x[n] and h[n], respectively. The 6-point inverse DFT of the product Y6(k) = X6(k)H6(k),
denoted y6[n], produces the following values:

n 0 1 2 3 4 5
y6[n] 3 3 3 4 4 3

Let X5(k) and H5(k) denote the 5-point DFT’s of the aforementioned sequences x[n] and
h[n]. The 5-point inverse DFT of the product Y5(k) = X5(k)H5(k), denoted y5[n], produces
the following values:

n 0 1 2 3 4
y5[n] 4 4 4 4 4

Given y6[n] and y5[n], find the linear convolution of x[n] and h[n], i. e., list all of the
numerical values of y[n] = x[n] ∗ h[n].

Problem 2. [30 points]
Consider the autoregressive AR(2) process generated via the difference equation

x[n] = x[n− 1]− 1

2
x[n− 2] + ν[n]

where ν[n] is a stationary white noise process with variance σ2

w = 5/2 = 2.5. (The value of
σ2

w was chosen so that the autocorrelation values requested in part (a) are whole numbers.)

(a) Determine the numerical values of rxx[0], rxx[1], rxx[2], where rxx[m] is the autocorre-
lation sequence rxx[m] = E{x[n]x[n−m]}. Then determine the value of rxx[3].

(b) Determine a simple, closed-form expression for the spectral density for x[n], Sxx(ω),
which may be expressed as the DTFT of rxx[m]:

Sxx(ω) =
∞
∑

m=−∞

rxx[m]e−jmω

(c) Consider the first-order predictor

x̂[n] = −a1(1)x[n− 1]

Determine the numerical value of the optimum predictor coefficient a1(1) and the
corresponding minimum mean-square error.

(d) Consider the third-order predictor

x̂[n] = −a3(1)x[n− 1]− a3(2)x[n− 2]− a3(3)x[n− 3]

Determine the numerical values of the optimum predictor coefficients a3(1), a3(2), and
a3(3) and the corresponding minimum mean-square error.
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Problem 3. [30 points]
As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed

into two sequences of length 4 as

f0[n] = x[2n], n = 0, 1, 2, 3 f1[n] = x[2n + 1], n = 0, 1, 2, 3

We compute a 4 -pt. DFT of each of these two sequences as

f0[n]
DFT
←→

4
F0[k] f1[n]

DFT
←→

4
F1[k]

The specific values of F0[k] and F1[k], k = 0, 1, 2, 3, obtained from the length N = 8 sequence
in question are listed in the Table below.

k 0 1 2 3
F0[k] 0 4 0 0

F1[k] 0 −
√

2(2 + 2j) 0 0
W k

8
1 1√

2
(1− j) -j − 1√

2
(1 + j)

(20 pts) From the values of F0[k] and F1[k], k = 0, 1, 2, 3, and the values of W k
8

= e−j 2π

8
k,

k = 0, 1, 2, 3, provided in the Table, determine the numerical values of the actual
N = 8-pt. DFT of x[n] denoted X8[k] for k = 0, 1, 2, 3, 4, 5, 6, 7.

(10 pts) The underlying length N = 8 sequence x[n] may be expressed as

x[n] = cos

(

2π
k1

8
n

)

+ j sin

(

2π
k2

8
n

)

, n = 0, 1, ..., 7.

where k1 and k2 are both integers between 0 and 7, that is, ki ∈ {0, 1, 2, 3, 4, 5, 6, 7}, i =
1, 2. Given the values of X8[k] for k = 0, 1, ..., 7 determined in part (a), determine the
numerical values of k1 and k2.
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