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Figure 2.
Problem 3. This problem is about digital subbanding of the three DT signals xi[n],
i = 0, 1, 2 defined below. Digital subbanding of these three signals is effected in an efficient
way via filter bank in Figure 2. All of the quantities in Figure 2 are defined below; the
respective impulse responses of the polyphase component filters are defined in terms of the
ideal lowpass filter impulse response below.

hLP [n] = 3
sin

(

π
3
n
)

πn
(1)

The polyphase component filters on the left side of Figure 2 are defined as

h+

ℓ [n] = hLP [3n+ ℓ], ℓ = 0, 1, 2. (2)

The respective signals at the inputs to these filters are the signals below, all sampled at the
Nyquist rate, Fs = 2W . That is xi[n] = xi(nTs), i = 0, 1, 2 where Ts =

1

2W
.

x0(t) = Ts

1

2

{

sin(2πW (t− t0))

π(t− t0)
+
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π(t + t0)

}

where: t0 =
1

4W
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j
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x2(t) = Ts
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where: t0 =
1
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y0[n] = x0[n] + x1[n] cos
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3
0
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3
0
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3
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3
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(3)

Plot the magnitude of the DTFT Y (ω) of the interleaved signal y[n] in Figure 2.

10








