SOLUTION

NAME: 27 Oct. 2017 ECE 538 Digital Signal Processing I Exam 2 Fall 2017

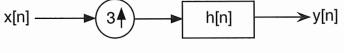
Cover Sheet

WRITE YOUR NAME ON THIS COVER SHEET

Test Duration: 60 minutes. Open Book but Closed Notes. One (both sides) handwritten 8.5 in x 11 in crib sheet allowed Calculators NOT allowed. All work should be done in the space provided.

There are THREE problems.

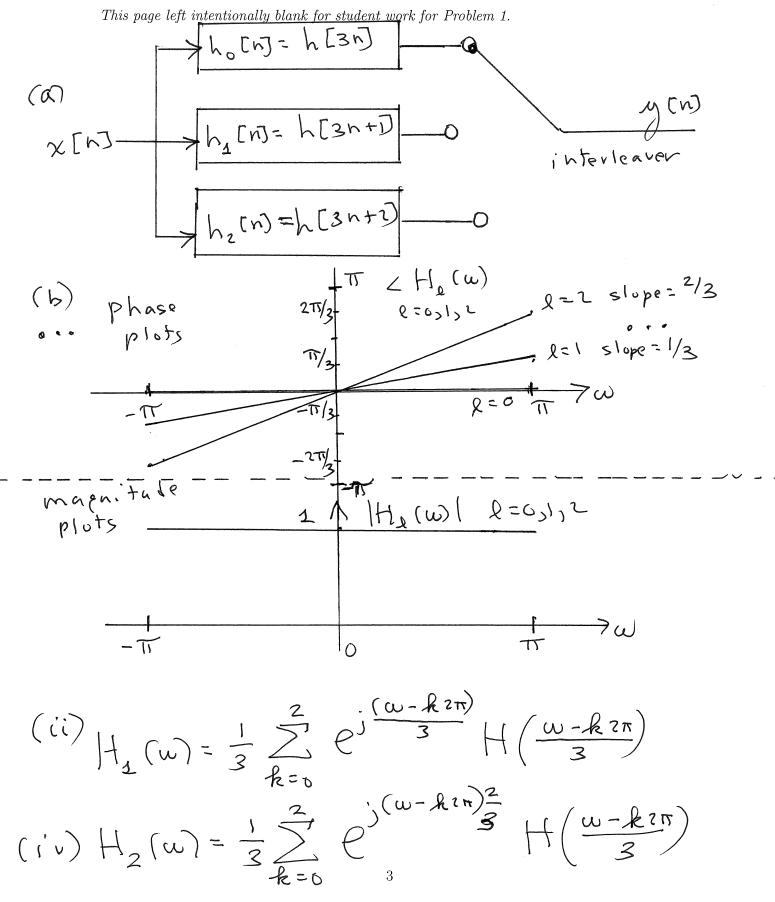
Continuous-Time Fourier Transform (Hz): $X(F) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$ Continuous-Time Fourier Transform Pair (Hz): $\mathcal{F}\left\{\frac{\sin(2\pi Wt)}{\pi t}\right\} = rect\left\{\frac{F}{2W}\right\}$ where rect(x) = 1 for |x| < 0.5 and rect(x) = 0 for |x| > 0.5. Continuous-Time Fourier Transform Property: $\mathcal{F}\{x_1(t)x_2(t)\} = X_1(F) * X_2(F)$, where * denotes convolution, and $\mathcal{F}\{x_i(t)\} = X_i(F), i = 1, 2$. Relationship between DTFT and CTFT frequency variables in Hz: $\omega = 2\pi \frac{F}{F_s}$, where $F_s = \frac{1}{T_s}$ is the sampling rate in Hz **Problem 1.** Consider the upsampler system below in Figure 1.



- (a) Draw block diagram of efficient implementation of the upsampler system in Fig. 1.
- (b) Your answer to part (a) should involve the polyphase components of h[n]: $h_0[n] = h[3n]$, $h_1[n] = h[3n + 1]$, and $h_2[n] = h[3n + 2]$ and the DTFT of h[n], denoted $H(\omega)$. For the plots requested below, you can do all magnitude plots on one graph and you can do all phase plots on one graph, to save time and space.
 - (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot the magnitude of the DTFT of $h_0[n] = h[3n], H_0(\omega)$, over $-\pi < \omega < \pi$.
 - (ii) For the general case where h[n] is an arbitrary impulse response, express the DTFT of $h_1[n] = h[3n+1]$, denoted $H_1(\omega)$, in terms of $H(\omega)$.
 - (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase of the DTFT $h_1[n] = h[3n+1], H_1(\omega)$, over $-\pi < \omega < \pi$.
 - (iv) For the general case where h[n] is an arbitrary impulse response, write an expression for the DTFT, $H_2(\omega)$, of $h_2[n] = h[3n + 2]$ in terms of $H(\omega)$ that holds for all ω .
 - (v) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, plot both the magnitude AND phase of the DTFT $h_2[n] = h[3n+2], H_2(\omega)$, over $-\pi < \omega < \pi$.
- (c) Consider that the input to the system in Figure 1 is a sampled version of the analog sinewave below (turned-on forever) sampled at a rate of $F_s = 2$ Hz. This is Nyquist rate sampling with no aliasing. The answer to each of the parts below should be an expression that holds for all time, for example, a DT sinewave turned-on forever.

 $x[n] = x_a(nT_s),$ $T_s = \frac{1}{2}$ where: $x_a(t) = \cos(2\pi t)$

- (i) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output $y_0[n] = x[n] * h_0[n]$, when x[n] is input to the filter $h_0[n] = h[3n]$.
- (ii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output $y_1[n] = x[n] * h_1[n]$, when x[n] is input to the filter $h_1[n] = h[3n+1]$.
- (iii) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\frac{\pi n}{n}}$, determine the output $y_2[n] = x[n] * h_2[n]$, when x[n] is input to the filter $h_2[n] = h[3n+2]$.
- (iv) For the ideal case where $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$, determine the output y[n] of the system in Figure 1, when x[n] is input to the system.



This page left intentionally blank for student work for Problem 1.

$$(c) - (i) \quad h_{0}(n) = \delta(n)$$

$$y_{0}(n) = \chi(n) = \cos\left(2\pi t\right) \left(\frac{1}{t} = \frac{n t}{2} \right)$$

$$(c) - (ii) \quad h_{1}(n) = \frac{\sin\left(\pi (n + \frac{1}{3})\right)}{\pi (n + \frac{1}{3})} - \infty < n < \infty$$

$$y_{1}(n) = \cos\left(2\pi \left(\frac{n t}{2} + \frac{1}{3} \cdot \frac{1}{2}\right)\right) = \cos\left(2\pi \left(\frac{n t}{2} + \frac{1}{6}\right)\right)$$

$$= \cos\left(\pi \left(n + \frac{1}{3}\right)\right) = \cos\left(\pi n + \frac{\pi}{3}\right)$$

$$(c) - (iii) \quad h_{2}(n) = \frac{\sin\left(\pi \left(n + \frac{2}{3}\right)\right)}{\pi (n + \frac{2}{3})} - \infty < n < \infty$$

$$M_{2}[n] = \cos\left(2\pi \left(n \frac{1}{2} + \frac{2}{3} \left(\frac{1}{2}\right)\right)\right) = \cos\left(2\pi \left(\frac{n t}{2} + \frac{1}{3}\right)\right)$$

$$= \cos\left(\pi \left(n + \frac{2}{3}\right)\right) = \cos\left(\pi n + \frac{2\pi}{3}\right)$$

$$(() - (iv))$$

$$M(n) = \chi_{A}\left(n\frac{T_{s}}{3}\right) = \chi_{A}\left(n\frac{1}{3}\cdot\frac{1}{2}\right) = \chi_{A}\left(\frac{n}{6}\right)$$

$$= \cos\left(2\pi\frac{n}{6}\right) = \cos\left(\frac{\pi}{3}n\right)$$

$$4$$

EE538 Digital Signal Processing I

2(a) Consider the continuous-time signal $x_0(t)$ below. A discrete-time signal is created by sampling $x_0(t)$ according to $x_0[n] = x_0(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_0[n]$, $|X_0(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_0(t) = \cos(2\pi W t)$$

$$\chi_{0}[n] = \chi_{0}(nT_{5}) = \cos\left(2\pi W \frac{n}{4W}\right) = \cos\left(\frac{1}{2}n\right)$$

$$- \omega < n < \infty$$

$$- \pi - \frac{\pi}{2}$$

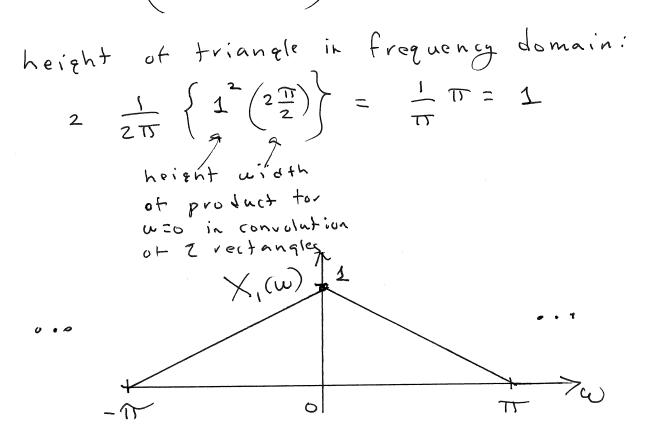
$$\frac{1}{2} \pi - \frac{\pi}{2}$$

2(b) Consider the continuous-time signal $x_1(t)$ below. A discrete-time signal is created by sampling $x_1(t)$ according to $x_1[n] = x_1(nT_s)$ with $F_s = \frac{1}{T_s} = 2W$. Plot the magnitude of the DTFT of $x_1[n]$, $|X_1(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_{1}(t) = T_{s} \frac{1}{W} \left\{ \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right\}^{2}$$

$$\chi_{1}[n] = \frac{1}{2W} \frac{1}{W} \left\{ \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \frac{n}{2W} \right\}^{2}$$

$$= \frac{4}{2} \left\{ \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right\}^{2}$$



7

2(c) Consider the continuous-time signal $x_2(t)$ below. A discrete-time signal is created by sampling $x_2(t)$ according to $x_2[n] = x_2(nT_s)$ with $F_s = \frac{1}{T_s} = 3W$. Plot the magnitude of the DTFT of $x_2[n]$, $|X_2(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_{2}(t) = T_{s} \frac{1}{2} \left\{ \frac{\sin(2\pi Wt)}{\pi t} + \frac{\sin(2\pi \frac{W}{2}t)}{\pi t} \right\}$$

$$\chi_{2}[n] = \frac{1}{3W} \frac{1}{2} \left\{ \frac{\sin(2\pi Wt)}{\pi t} + \frac{\sin(2\pi \frac{W}{3}w)}{\pi \frac{N}{3W}} + \frac{\sin(2\pi \frac{W}{2}\frac{N}{3W})}{\pi \frac{N}{3W}} \right\}$$

$$= \frac{1}{2} \left\{ \frac{\sin(\frac{2\pi}{3}n)}{\pi \frac{N}{N}} + \frac{\sin(\frac{\pi}{3}n)}{\pi \frac{N}{N}} \right\}$$

$$= \frac{1}{2} \left\{ \frac{\sin(\frac{2\pi}{3}n)}{\pi \frac{N}{N}} + \frac{\sin(\frac{\pi}{3}n)}{\pi \frac{N}{N}} \right\}$$

$$-\infty \le n \le \infty$$

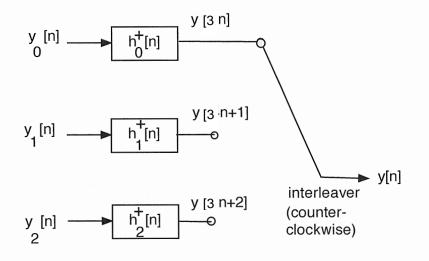


Figure 2.

Problem 3. This problem is about digital subbanding of the three DT signals $x_i[n]$, i = 0, 1, 2 from Problem 2. Digital subbanding of these three signals is effected in an efficient way via filter bank in Figure 2. All of the quantities in Figure 2 are defined below; the respective impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response below.

$$h_{LP}[n] = 3 \frac{\sin\left(\frac{\pi}{3}n\right)}{\pi n} \tag{1}$$

The polyphase component filters on the left side of Figure 2 are defined as

$$h_{\ell}^{+}[n] = h_{LP}[3n+\ell], \quad \ell = 0, 1, 2.$$
 (2)

The respective signals at the inputs to these filters are formed from the input signals as (from Problem 2) as described below. There is only ONE part to this problem: plot the magnitude of the DTFT $Y(\omega)$ of the interleaved signal y[n].

$$y_{0}[n] = x_{0}[n] + x_{1}[n]\cos\left(\frac{2\pi}{3}0\right) - \hat{x}_{1}[n]\sin\left(\frac{2\pi}{3}0\right) + x_{2}[n]\cos\left(\frac{2\pi}{3}0\right) + \hat{x}_{2}[n]\sin\left(\frac{2\pi}{3}0\right) y_{1}[n] = x_{0}[n] + x_{1}[n]\cos\left(\frac{2\pi}{3}1\right) - \hat{x}_{1}[n]\sin\left(\frac{2\pi}{3}1\right) + x_{2}[n]\cos\left(\frac{2\pi}{3}1\right) + \hat{x}_{2}[n]\sin\left(\frac{2\pi}{3}1\right) y_{2}[n] = x_{0}[n] + x_{1}[n]\cos\left(\frac{2\pi}{3}2\right) - \hat{x}_{1}[n]\sin\left(\frac{2\pi}{3}2\right) + x_{2}[n]\cos\left(\frac{2\pi}{3}2\right) + \hat{x}_{2}[n]\sin\left(\frac{2\pi}{3}2\right) (3)$$

