NAME: 31 Oct. 2014 ECE 538 Digital Signal Processing I Exam 2 Fall 2014

Cover Sheet

WRITE YOUR NAME ON THIS COVER SHEET

Test Duration: 60 minutes.

Open Book but Closed Notes.

One (both sides) handwritten 8.5 in x 11 in crib sheet allowed Calculators NOT allowed.

All work should be done in the space provided.

There are two problems. Problem 1 has 4 parts, 1(a) thru 1(d). Problem 2 has 8 parts, 2(a) thru 2(h).

Continuous-Time Fourier Transform (Hz): $X(F) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$ Continuous-Time Fourier Transform Pair (Hz): $\mathcal{F}\left\{\frac{\sin(2\pi Wt)}{\pi t}\right\} = rect\left\{\frac{F}{2W}\right\}$ where rect(x) = 1 for |x| < 0.5 and rect(x) = 0 for |x| > 0.5. Continuous-Time Fourier Transform Property: $\mathcal{F}\{x_1(t)x_2(t)\} = X_1(F) * X_2(F)$, where * denotes convolution, and $\mathcal{F}\{x_i(t)\} = X_i(F)$, i = 1, 2. Relationship between DTFT and CTFT frequency variables in Hz: $\omega = 2\pi \frac{F}{F_s}$, where $F_s = \frac{1}{T_s}$ is the sampling rate in Hz Prob. 1(a) Consider the continuous-time signal $x_0(t)$ below. A discrete-time signal is created by sampling $x_0(t)$ according to $x_0[n] = x_0(nT_s)$ with $F_s = \frac{1}{T_s} = \frac{8}{3}W$. Plot the magnitude of the DTFT of $x_0[n]$, $|X_0(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_0(t) = T_s \frac{\sin(2\pi W t)}{\pi t}$$

1(b) Consider the continuous-time signal $x_1(t)$ below. A discrete-time signal is created by sampling $x_1(t)$ according to $x_1[n] = x_1(nT_s)$ with $F_s = \frac{1}{T_s} = \frac{8}{3}W$. Plot the magnitude of the DTFT of $x_1[n]$, $|X_1(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

1(c) Consider the continuous-time signal $x_2(t)$ below. A discrete-time signal is created by sampling $x_2(t)$ according to $x_2[n] = x_2(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_2[n]$, $|X_2(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_2(t) = T_s \left\{ \frac{\sin(2\pi Wt)}{\pi t} + \frac{\sin(2\pi \frac{w}{3}t)}{\pi t} \right\} \cos(2\pi Wt)$$

$$\frac{W}{3}$$
 mapped to $2\pi \frac{W}{3} \frac{1}{4W} = \frac{\pi}{6}$

shifted to left and right by To and divided by 2 in amplitude

4

$$\frac{11}{2} - \frac{11}{6} = \frac{11}{3}$$

- 2 T

1(d) Consider the continuous-time signal $x_3(t)$ below. A discrete-time signal is created by sampling $x_3(t)$ according to $x_3[n] = x_3(nT_s)$ with $F_s = \frac{1}{T_s} = 4W$. Plot the magnitude of the DTFT of $x_3[n]$, $|X_3(\omega)|$, over $-\pi < \omega < \pi$. Show all work.

$$x_3(t) = T_s \frac{2}{W} \left\{ \frac{\sin\left(2\pi \frac{W}{2}t\right)}{\pi t} \right\}^2 \cos(2\pi W t)$$

because of squaring, max freq is doubled to W which is mapped to $2\pi \frac{W}{4W} = \frac{\pi}{2}$

so then the triangle shifted to the left and right by T/2

Figure 1.

Problem 2. This problem is about digital subbanding of the four DT signals $x_i[n]$, i = 0, 1, 2, 3 from Problem 1. Digital subbanding of these four signals is effected in the efficient way via filter bank in Figure 1. All of the quantities in Figure 1 are defined below: the respective impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response below.

$$h_{LP}[n] = 4 \frac{\sin\left(\frac{\pi}{4}n\right)}{\pi n} \tag{1}$$

The polyphase component filters on the left side of Figure 1 are defined as

$$h_{\ell}^{+}[n] = h_{LP}[4n + \ell], \quad \ell = 0, 1, 2, 3.$$
 (2)

The respective signals at the inputs to these filters are formed from the input signals as

$$\begin{bmatrix} y_0[n] \\ y_1[n] \\ y_2[n] \\ y_3[n] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ e^{-j\frac{2\pi}{4}} & 1 & e^{j\frac{2\pi}{4}} & e^{j\frac{4\pi}{4}} \\ e^{-j\frac{2\pi(2)}{4}} & 1 & e^{j\frac{2\pi(2)}{4}} & e^{j\frac{4\pi(2)}{4}} \\ e^{-j\frac{2\pi(3)}{4}} & 1 & e^{j\frac{2\pi(3)}{4}} & e^{j\frac{4\pi(3)}{4}} \end{bmatrix} \begin{bmatrix} x_0[n] \\ x_1[n] \\ x_2[n] \\ x_3[n] \end{bmatrix} \Rightarrow \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ e^{-j\frac{2\pi}{4}} & 1 & e^{j\frac{2\pi}{4}} & e^{j\frac{4\pi}{4}} \\ e^{-j\frac{2\pi(2)}{4}} & 1 & e^{j\frac{2\pi(2)}{4}} & e^{j\frac{4\pi(3)}{4}} \\ e^{-j\frac{2\pi(3)}{4}} & 1 & e^{j\frac{2\pi(3)}{4}} & e^{j\frac{4\pi(3)}{4}} \end{bmatrix}$$

$$(3)$$

The polyphase component filters on the right side of Figure 1 are defined as

$$h_{\ell}^{-}[n] = h_{LP}[4n - \ell], \quad \ell = 0, 1, 2, 3.$$
 (4)

The final output signals (on the far right side of Figure 1) are formed from linear combinations of the outputs of these filters via the matrix transformation below.

$$\begin{bmatrix} z_{0}[n] \\ z_{1}[n] \\ z_{2}[n] \\ z_{3}[n] \end{bmatrix} = \begin{bmatrix} 1 & e^{j\frac{2\pi}{4}} & e^{j\frac{2\pi(2)}{4}} & e^{j\frac{2\pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j\frac{2\pi}{4}} & e^{-j\frac{2\pi(2)}{4}} & e^{-j\frac{2\pi(3)}{4}} \\ 1 & e^{-j\frac{4\pi}{4}} & e^{-j\frac{4\pi(3)}{4}} & e^{-j\frac{4\pi(3)}{4}} \end{bmatrix} \begin{bmatrix} s_{0}[n] \\ s_{1}[n] \\ s_{2}[n] \\ s_{3}[n] \end{bmatrix} \Rightarrow \mathbf{B} = \begin{bmatrix} 1 & e^{j\frac{2\pi}{4}} & e^{j\frac{2\pi(2)}{4}} & e^{j\frac{2\pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j\frac{2\pi}{4}} & e^{-j\frac{2\pi(2)}{4}} & e^{-j\frac{2\pi(3)}{4}} \\ 1 & e^{-j\frac{4\pi}{4}} & e^{-j\frac{4\pi(3)}{4}} & e^{-j\frac{4\pi(3)}{4}} \end{bmatrix}$$

$$(5)$$

Problem 2, part (a). Show all work. For all parts of this problem, $h_{LP}[n] = 4 \frac{\sin(\frac{\pi}{4}n)}{\pi n}$.

- (a) (i) Determine and write a simplified expression for the DTFT, $H_3^-(\omega)$, of $h_3^-[n] = h_{LP}[4n-3]$ that holds for $-\pi < \omega < \pi$. Simplify as much as possible.
 - (ii) Plot the magnitude of $H_3^-(\omega)$ over $-\pi < \omega < \pi$.
 - (iii) Plot the phase $\angle H_3^-(\omega)$ over $-\pi < \omega < \pi$.

(a)
$$H_3(\omega) = e^{-j\frac{3}{4}\omega}$$
 for $-\pi < \omega < \pi$

2(b) Express the output of the filter $h_2^+[n] = h_{LP}[4n+2]$ in terms of sampled and time-shifted versions of the original analog input signals $x_0(t)$, $x_1(t)$, $x_2(t)$, and $x_3(t)$. You don't need to write out the expressions for $x_0(t)$, $x_1(t)$, $x_2(t)$, and $x_3(t)$. Also, just carry T_s along as a variable. You don't have to do a lot of work here; explain answer.

output of $h_2^{(n)}$ is associated with 3rd row of A matrix which is simply -1,1,-1,1 and $h_2^{(n)}$ effects a fractional time-shift and $h_2^{(n)}$ effects a fractional time-shift of $\frac{2T_s}{4} = \frac{T_s}{2}$

$$\frac{y(4n+2)}{(nT_s + \frac{7s}{2})} + x_1(nT_s + \frac{7s}{2}) - x_2(nT_s + \frac{7s}{2})$$

$$+ x_3(nT_s + \frac{7s}{2})$$

It should be noted that T_s uas different for the last

two signals relative to the

first two signals $T_s^{(1)} = \frac{1}{F_s^{(1)}} = \frac{3}{8W}$ $T^{(2)} = \frac{1}{F_s^{(2)}} = \frac{1}{4W}$

2(c) The output of the filter $h_1^-[n] = h_{LP}[4n-1]$ is denoted $s_1[n]$ in the block diagram. Express $s_1[n]$ in terms of sampled and possibly time-shifted versions of the original analog input signals $x_0(t)$, $x_1(t)$, $x_2(t)$, and $x_3(t)$. You don't need to write out the expressions for $x_0(t)$, $x_1(t)$, $x_2(t)$, and $x_3(t)$. Also, just carry T_s along as a variable. You don't have to do a lot of work here; briefly explain your answer.

h, En and h, [n) are effectively in series such that hitm + hitm = SCN) Thus, no time-shift so we just need the

second row of the A matrix which is

51(N)=-j xo[N] + x,[N]+j x2[N) - x3[N)

$$= -\frac{1}{3} (n)^{\frac{1}{2}} (n)$$

2(d) Plot the magnitude of the DTFT, $Y(\omega)$, of the interleaved signal y[n]. Carefully label and graph the plot, clearly demarcating the subbands and showing which signal is in each subband.

2(e) Determine the convolution of $h_2^+[n] = h_{LP}[4n+2]$ with itself $h_2^+[n] = h_{LP}[4n+2]$, where $h_{LP}[n] = 4 \frac{\sin\left(\frac{\pi}{4}n\right)}{\pi n}$. Simplify your answer for

$$g[n] = h_2^+[n] * h_2^+[n] = h_{LP}[4n+2] * h_{LP}[4n+2] =?$$

as much as possible. Plot the phase, $\angle G(\omega)$, of the DTFT of $g[n] = h_2^+[n] * h_2^+[n]$. This problem is most easily solved via frequency domain analysis. You must show and explain your work.

2(f) It is easy to show that $\mathbf{AB} = 4\mathbf{I}$ and $\mathbf{BA} = 4\mathbf{I}$, where \mathbf{I} is the 4x4 identity Matrix. Plot the magnitude, $|Z_1(\omega)|$, of the DTFT of the output $z_1[n]$, over $-\pi < \omega < \pi$.

ZITN = 4 XITN)

Same as answer to 1 (b) except

for amplitude scaling by 4

Figure 2.

2(g) Consider the system depicted in Figure 2 above. The 4x4 matrices **A** and **B** are as defined previously for the system in Figure 1, but there are some modifications relative to the filters on the right hand side. The output of the filter $h_3^+[n] = h_{LP}[4n+3]$ on the right hand side is denoted $s_1[n]$ in the block diagram. Express $s_1[n]$ in terms of sampled and possibly time-shifted versions of the original analog input signals $x_0(t)$, $x_1(t)$, $x_2(t)$, and $x_3(t)$. (Part (h) on the next and final page, and refers to Fig 2. above.)

$$h_{1}(n) * h_{3}(n) = J(n+1)$$

and, as noted previously

 $2n + vou + ot + A$ is simply $\{-j, j, j-1\}$
 $S_{1}(n) = -j \times_{0}(n+1) + \chi_{1}(n+1) + j \times_{2}(n+1)$
 $-\chi_{3}(n+1)$
 $= -j \times_{0} (nT_{5} + T_{5}) + \chi_{1}(n+1)T_{5}$
 $+j \times_{2} (n+1)T_{5}$
 $-\chi_{3}(n+1)$

2(h) It is easy to show that $\mathbf{AB} = 4\mathbf{I}$ and $\mathbf{BA} = 4\mathbf{I}$, where \mathbf{I} is the 4x4 identity Matrix. For EACH output in Figure 2, express the output $z_k[n]$, in terms of $x_0[n]$, $x_1[n]$, $x_2[n]$, and $x_3[n]$, for k = 0, 1, 2, 3. Explain your answers.

$$Z_{0}(n) = 4 \times_{0}(n+1)$$

$$Z_{1}(n) = 4 \times_{1}(n+1)$$

$$Z_{2}(n) = 4 \times_{2}(n+1)$$

$$Z_{3}(n) = 4 \times_{3}(n+1)$$
Since: $h_{0}(n) * h_{0}(n+1)$

$$= s(n) * s(n+1) = s(n+1)$$

$$h_{1}(n) * h_{2}(n) = s(n+1)$$

$$h_{2}(n) * h_{3}(n) = s(n+1)$$

$$h_{3}(n) * h_{4}(n) = s(n+1)$$

and deinterleaver is inverse system of interleaver