## NAME: 25 Oct. 2019 ECE 538 Digital Signal Processing I Exam 2 Fall 2019

## **Cover Sheet**

WRITE YOUR NAME ON THIS COVER SHEET

Test Duration: 60 minutes. Open Book but Closed Notes. One (both sides) handwritten 8.5 in x 11 in crib sheet allowed Calculators NOT allowed. All work should be done in the space provided. **Clearly mark your answer to each part.** 

Continuous-Time Fourier Transform (Hz):  $X(F) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft}dt$ Continuous-Time Fourier Transform Pair (Hz):  $\mathcal{F}\left\{\frac{\sin(2\pi Wt)}{\pi t}\right\} = rect\left\{\frac{F}{2W}\right\}$  where rect(x) = 1 for |x| < 0.5 and rect(x) = 0 for |x| > 0.5. Continuous-Time Fourier Transform Property:  $\mathcal{F}\{x_1(t)x_2(t)\} = X_1(F) * X_2(F)$ , where \* denotes convolution, and  $\mathcal{F}\{x_i(t)\} = X_i(F), i = 1, 2$ . Relationship between DTFT and CTFT frequency variables in Hz:  $\omega = 2\pi \frac{F}{F_s}$ , where  $F_s = \frac{1}{T_s}$  is the sampling rate in Hz **Problem 1.** Consider the upsampler system below in Figure 1.



Figure 1.

- (a) Draw block diagram of an efficient implementation of the upsampler system in Fig. 1.
- (b) Your answer to part (a) should involve the polyphase components of h[n]:  $h_0[n] = h[3n]$ ,  $h_1[n] = h[3n + 1]$ ,  $h_2[n] = h[3n + 2]$ . For the plots requested below, do all magnitude plots on one graph and you can do all phase plots on one graph.
  - (i) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , plot the magnitude of the DTFT of  $h_0[n] = h[3n], H_0(\omega)$ , over  $-\pi < \omega < \pi$ .
  - (ii) For the general case where h[n] is an arbitrary impulse response, express the DTFT of  $h_1[n] = h[3n + 1]$ , denoted  $H_1(\omega)$ , in terms of  $H(\omega)$ .
  - (iii) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , plot both the magnitude AND phase of the DTFT  $h_1[n] = h[3n + 1]$ ,  $H_1(\omega)$ , over  $-\pi < \omega < \pi$ .
  - (iv) For the general case where h[n] is an arbitrary impulse response, express the DTFT of  $h_2[n] = h[3n+2]$ , denoted  $H_2(\omega)$ , in terms of  $H(\omega)$ .
  - (v) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , plot both the magnitude AND phase of the DTFT  $h_2[n] = h[3n+2], H_2(\omega)$ , over  $-\pi < \omega < \pi$ .
- (c) Consider that the input to the system in Figure 1 is a sampled version of the analog signal in Figure 2. For the remaining parts of this problem, the input signal is as defined below where  $x_a(t)$  is the analog signal in Figure 2. Assume that  $1/T_s = 1$  Hz is above the Nyquist rate for this signal. That is, even though this signal is not strictly bandlimited, assume that aliasing effects are negligible.

$$x[n] = x_a(nT_s), \quad T_s = 1 \ sec$$



Figure 2.

- (i) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , determine the output y[n] of the system in Figure 1, when x[n] is input to the system. Write output in sequence form (indicate where n = 0 is) OR do stem plot.
- (ii) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , determine the output  $y_0[n] = x[n] * h_0[n]$ , when x[n] is input to the filter  $h_0[n] = h[3n]$ . Write output in sequence form (indicating where is n = 0) OR do stem plot.
- (iii) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , determine the output  $y_1[n] = x[n] * h_1[n]$ , when x[n] is input to the filter  $h_1[n] = h[3n+1]$ . Write output in sequence form (indicating where n = 0 is) OR do stem plot.
- (iv) For the ideal case where  $h[n] = 3 \frac{\sin(\frac{\pi}{3}n)}{\pi n}$ , determine the output  $y_2[n] = x[n] * h_2[n]$ , when x[n] is input to the filter  $h_2[n] = h[3n+2]$ . Write output in sequence form (indicating where n = 0 is) OR do stem plot.



## Figure 3.

(d) Draw a block diagram of an efficient implementation of the filtering followed by downsampling system depicted in Fig. 3. Be sure to define all quantities.



## Figure 4.

**Problem 2.** This problem is about digital subbanding of four different DT signals. For the sake of simplicity, the signals are the four infinite-length sinewave signals defined below.

$$x_0[n] = \cos\left(\frac{\pi}{8}n\right) \quad x_1[n] = \cos\left(\frac{3\pi}{8}n\right) \quad x_2[n] = \cos\left(\frac{5\pi}{8}n\right) \quad x_3[n] = \cos\left(\frac{7\pi}{8}n\right)$$

Digital subbanding of these four signals is effected in an efficient way via the structure in Figure 4, where the various quantities are defined below: The impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response

$$h_{LP}[n] = 4 \frac{\sin\left(\frac{\pi}{4}n\right)}{\pi n} \tag{1}$$

$$h_{\ell}^{+}[n] = h_{LP}[4n + \ell], \quad \ell = 0, 1, 2, 3.$$
 (2)

The respective signals at the inputs to these filters are formed from the input signals as described below, where  $\hat{x}_k[n]$  is the Hilbert Transform of  $x_k[n]$ , k=0,1,2,3. (a) Plot the magnitude of the DTFT  $Y(\omega)$  of the interleaved signal y[n]. Clearly indicate the frequencies of the sinewaves. (b) Draw a Block Diagram to recover the original signals,  $x_k[n], k = 0, 1, 2, 3$ , for the general case (not just for sinewaves.) You can denote the cosine matrix in Eq (3) as **A** and the sine matrix in Eq (3) as **B**.

$$\begin{bmatrix} y_0[n] \\ y_1[n] \\ y_2[n] \\ y_3[n] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \cos\left(\frac{2\pi}{4}(1)\right) & \cos\left(\frac{4\pi}{4}(1)\right) & \cos\left(\frac{6\pi}{4}(1)\right) \\ 1 & \cos\left(\frac{2\pi}{4}(2)\right) & \cos\left(\frac{4\pi}{4}(2)\right) & \cos\left(\frac{6\pi}{4}(2)\right) \\ 1 & \cos\left(\frac{2\pi}{4}(3)\right) & \cos\left(\frac{4\pi}{4}(3)\right) & \cos\left(\frac{6\pi}{4}(3)\right) \end{bmatrix} \begin{bmatrix} x_0[n] \\ x_1[n] \\ x_2[n] \\ x_3[n] \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \sin\left(\frac{2\pi}{4}(1)\right) & \sin\left(\frac{4\pi}{4}(1)\right) & \sin\left(\frac{6\pi}{4}(1)\right) \\ 0 & \sin\left(\frac{4\pi}{4}(2)\right) & \sin\left(\frac{6\pi}{4}(2)\right) \\ 0 & \sin\left(\frac{2\pi}{4}(3)\right) & \sin\left(\frac{4\pi}{4}(3)\right) & \sin\left(\frac{6\pi}{4}(3)\right) \end{bmatrix} \begin{bmatrix} \hat{x}_0[n] \\ \hat{x}_1[n] \\ \hat{x}_2[n] \\ \hat{x}_3[n] \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \sin\left(\frac{2\pi}{4}(1)\right) & \sin\left(\frac{4\pi}{4}(2)\right) & \sin\left(\frac{6\pi}{4}(1)\right) \\ 0 & \sin\left(\frac{2\pi}{4}(3)\right) & \sin\left(\frac{6\pi}{4}(3)\right) \end{bmatrix} \begin{bmatrix} \hat{x}_0[n] \\ \hat{x}_1[n] \\ \hat{x}_2[n] \\ \hat{x}_3[n] \end{bmatrix}$$

my posted solution assumed there was a minus sign in the middle between the two terms above in Eqn (3)