NAME:
 30 Oct. 2015
 ECE 538 Digital Signal Processing I Exam 2 Fall 2015

Cover Sheet

WRITE YOUR NAME ON THIS COVER SHEET
Test Duration: 60 minutes.
Open Book but Closed Notes.
One (both sides) handwritten 8.5 in x 11 in crib sheet allowed
Calculators NOT allowed.
All work should be done in the space provided.

There are two problems.
Problem 1 has 4 parts, 1(a) thru 1(d).
Problem 2 has 6 parts, 2(a) thru 2(f).

Continuous-Time Fourier Transform (Hz): $X(F)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi F t} d t$ Continuous-Time Fourier Transform Pair (Hz): $\mathcal{F}\left\{\frac{\sin (2 \pi W t)}{\pi t}\right\}=\operatorname{rect}\left\{\frac{F}{2 W}\right\}$ where $\operatorname{rect}(x)=1$ for $|x|<0.5$ and $\operatorname{rect}(x)=0$ for $|x|>0.5$.
Continuous-Time Fourier Transform Property: $\mathcal{F}\left\{x_{1}(t) x_{2}(t)\right\}=X_{1}(F) * X_{2}(F)$, where ${ }^{*}$ denotes convolution, and $\mathcal{F}\left\{x_{i}(t)\right\}=X_{i}(F), i=1,2$.
Relationship between DTFT and CTFT frequency variables in Hz: $\omega=2 \pi \frac{F}{F_{s}}$, where $F_{s}=\frac{1}{T_{s}}$ is the sampling rate in Hz

Prob. 1(a) Consider the continuous-time signal $x_{0}(t)$ below. A discrete-time signal is created by sampling $x_{0}(t)$ according to $x_{0}[n]=x_{0}\left(n T_{s}\right)$ with $F_{s}=\frac{1}{T_{s}}=8 W$. Plot the magnitude of the DTFT of $x_{0}[n],\left|X_{0}(\omega)\right|$, over $-\pi<\omega<\pi$. Show all work. NOTE: The signal $x_{0}[n]$ is the input signal for each of the three remaining parts of this problem.

$$
x_{0}(t)=T_{s} \frac{1}{2 W} \frac{\sin (2 \pi W t)}{\pi t} \frac{\sin (2 \pi 3 W t)}{\pi t}
$$

1(b) The discrete-time signal, $x_{1}[n]$, is created by running $x_{0}[n]$ from part (a) thru the DT system below. You don't have to do a lot of work but clearly explain your answers.

$$
h_{1}[n]=3 \frac{\sin \left(\frac{\pi}{3} n\right)}{\pi n}
$$

(i) Plot the magnitude of the DTFT of $x_{1}[n],\left|X_{1}(\omega)\right|$, over $-\pi<\omega<\pi$.
(ii) What is the new effective sampling rate, $F_{s}^{(1)}$, at the output relative to original sampling rate $F_{s}=8 W$?

1(c) The discrete-time signal, $x_{2}[n]$, is created by running $x_{0}[n]$ from part (a) through the DT system below.

$$
h_{2}[n]=2 \frac{\sin \left(\frac{\pi}{2} n\right)}{\pi n}
$$

(i) Plot the magnitude of the DTFT of $x_{2}[n],\left|X_{2}(\omega)\right|$, over $-\pi<\omega<\pi$.
(ii) Express the new effective sampling rate, $F_{s}^{(2)}$, at the output in terms of the original sampling rate $F_{s}=8 W$.

1(d) The discrete-time signal, $x_{3}[n]$, is created by running $x_{0}[n]$ from part (a) through the DT system below; "the output" refers to $x_{3}[n]$ in all parts below.

(i) Plot the magnitude of the DTFT of $x_{3}[n],\left|X_{3}(\omega)\right|$, over $-\pi<\omega<\pi$.
(ii) Express the new effective sampling rate, $F_{s}^{(3)}$, at the output in terms of the original sampling rate $F_{s}=8 W$?
(iii) Is there aliasing in the output? Yes or No. Briefly explain.
(iv) Is there loss of high frequency content in the output? Yes or No. Briefly explain.
(v) Express the output $x_{3}[n]$ in terms of a sampled version of the lowpass-filtered signal $x_{L P}(t)$ below, where $x_{0}(t)$ was defined in part (a). You can use $x_{L P}(t)$ in your answer to Problem 2(b.)

$$
x_{L P}(t)=x_{0}(t) * \frac{\sin \left(2 \pi \frac{8 W}{3} t\right)}{\pi t}
$$

Figure 1.
Problem 2. This problem is about digital subbanding of the four DT signals $x_{i}[n]$, $i=0,1,2,3$ from Problem 1. Digital subbanding of these four signals is effected in the efficient way via filter bank in Figure 1. All of the quantities in Figure 1 are defined below: the respective impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response below.

$$
\begin{equation*}
h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n} \tag{1}
\end{equation*}
$$

The polyphase component filters on the left side of Figure 1 are defined as

$$
\begin{equation*}
h_{\ell}^{+}[n]=h_{L P}[4 n+\ell], \quad \ell=0,1,2,3 . \tag{2}
\end{equation*}
$$

The respective signals at the inputs to these filters are formed from the input signals as

$$
\left[\begin{array}{l}
y_{0}[n] \tag{3}\\
y_{1}[n] \\
y_{2}[n] \\
y_{3}[n]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
e^{-j \frac{2 \pi}{4}} & 1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{4 \pi}{4}} \\
e^{-j \frac{2 \pi(2)}{4}} & 1 & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{4 \pi(2)}{4}} \\
e^{-j \frac{2 \pi(3)}{4}} & 1 & e^{j \frac{2 \pi(3)}{4}} & e^{j \frac{4 \pi(3)}{4}}
\end{array}\right]\left[\begin{array}{l}
x_{0}[n] \\
x_{1}[n] \\
x_{2}[n] \\
x_{3}[n]
\end{array}\right] \Rightarrow \mathbf{A}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
e^{-j \frac{2 \pi}{4}} & 1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{4 \pi}{4}} \\
e^{-j \frac{2 \pi(2)}{4}} & 1 & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{4 \pi(2)}{4}} \\
e^{-j \frac{2 \pi(3)}{4}} & 1 & e^{j \frac{2 \pi(3)}{4}} & e^{j \frac{4 \pi(3)}{4}}
\end{array}\right]
$$

The polyphase component filters on the right side of Figure 1 are defined as

$$
\begin{equation*}
h_{\ell}^{-}[n]=h_{L P}[4 n-\ell], \quad \ell=0,1,2,3 . \tag{4}
\end{equation*}
$$

The final output signals (on the far right side of Figure 1) are formed from linear combinations of the outputs of these filters via the matrix transformation below.
$\left[\begin{array}{l}z_{0}[n] \\ z_{1}[n] \\ z_{2}[n] \\ z_{3}[n]\end{array}\right]=\left[\begin{array}{cccc}1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{2 \pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j \frac{2 \pi}{4}} & e^{-j \frac{2 \pi(2)}{4}} & e^{-j \frac{2 \pi(3)}{4}} \\ 1 & e^{-j \frac{4 \pi}{4}} & e^{-j \frac{4 \pi(2)}{4}} & e^{-j \frac{4 \pi(3)}{4}}\end{array}\right]\left[\begin{array}{c}s_{0}[n] \\ s_{1}[n] \\ s_{2}[n] \\ s_{3}[n]\end{array}\right] \Rightarrow \mathbf{B}=\left[\begin{array}{cccc}1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{2 \pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j \frac{2 \pi}{4}} & e^{-j \frac{2 \pi(2)}{4}} & e^{-j \frac{2 \pi(3)}{4}} \\ 1 & e^{-j \frac{4 \pi}{4}} & e^{-j \frac{4 \pi(2)}{4}} & e^{-j \frac{4 \pi(3)}{4}}\end{array}\right]$

Problem 2, part (a). Show all work. For all parts of this problem, $h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}$.
(a) (i) Write a simple expression for the DTFT, $H_{2}^{-}(\omega)$, of $h_{2}^{-}[n]=h_{L P}[4 n-2]$ that holds for $-\pi<\omega<\pi$.
(ii) Plot the phase $\angle H_{2}^{-}(\omega)$ over $-\pi<\omega<3 \pi$. Note that I am asking you to plot the phase, $\angle H_{2}^{-}(\omega)$, from $-\pi$ to 3π.

2(b) Express the output of the filter $h_{2}^{+}[n]=h_{L P}[4 n+2]$ in terms of sampled and time-shifted versions of the original analog input signal $x_{0}(t)$ and also $x_{L P}(t)$ defined in Prob. 1(d). You don't need to write out the expressions for $x_{0}(t)$ and $x_{L P}(t)$. Keep in mind that all of the signals correspond to different sampling rates; make sure that's clear in your answer. You don't have to do a lot of work here but explain answers.

2(c) The output of the filter $h_{3}^{-}[n]=h_{L P}[4 n-3]$ is denoted $s_{3}[n]$ in the block diagram. Express $s_{3}[n]$ in terms of $x_{0}[n], x_{1}[n], x_{2}[n]$, and $x_{3}[n]$. You don't need to write out the expressions for $x_{0}[n], x_{1}[n], x_{2}[n]$, and $x_{3}[n]$. You don't have to do a lot of work here; briefly explain your answer.

2(d) Plot the magnitude of the DTFT, $Y(\omega)$, of the interleaved signal $y[n]$ over $\pi<\omega<\pi$. Carefully label and graph the plot, clearly demarcating the subbands and showing which signal is in each subband. Clearly indicate the regions where $Y(\omega)=0$.

2(e) Determine the convolution of $h_{1}^{+}[n]=h_{L P}[4 n+1]$ with $h_{3}^{+}[n]=h_{L P}[4 n+3]$, where $h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}$. Simplify your answer as much as possible.

$$
g[n]=h_{1}^{+}[n] * h_{3}^{+}[n]=h_{L P}[4 n+1] * h_{L P}[4 n+3]=?
$$

Plot the phase, $\angle G(\omega)$, of the DTFT of $g[n]=h_{1}^{+}[n] * h_{3}^{+}[n]$. This problem is most easily solved via frequency domain analysis. You must show and explain your work.

2(f) It is easy to show that $\mathbf{A B}=4 \mathbf{I}$ and $\mathbf{B A}=4 \mathbf{I}$, where \mathbf{I} is the 4 x 4 identity Matrix. Plot the magnitude, $\left|Z_{3}(\omega)\right|$, of the DTFT of the output $z_{3}[n]$, over $-\pi<\omega<\pi$.

