NAME: ECE 538 Digital Signal Processing I Exam 2 Fall 2014 Cover Sheet
 WRITE YOUR NAME ON THIS COVER SHEET
 Test Duration: 60 minutes.
 Open Book but Closed Notes.
 One (both sides) handwritten 8.5 in x 11 in crib sheet allowed
 Calculators NOT allowed.
 All work should be done in the space provided.

There are two problems.
Problem 1 has 4 parts, 1(a) thru 1(d). Problem 2 has 8 parts, 2(a) thru 2(h).

Continuous-Time Fourier Transform (Hz): $X(F)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi F t} d t$ Continuous-Time Fourier Transform Pair (Hz): $\mathcal{F}\left\{\frac{\sin (2 \pi W t)}{\pi t}\right\}=\operatorname{rect}\left\{\frac{F}{2 W}\right\}$ where $\operatorname{rect}(x)=1$ for $|x|<0.5$ and $\operatorname{rect}(x)=0$ for $|x|>0.5$.
Continuous-Time Fourier Transform Property: $\mathcal{F}\left\{x_{1}(t) x_{2}(t)\right\}=X_{1}(F) * X_{2}(F)$, where ${ }^{*}$ denotes convolution, and $\mathcal{F}\left\{x_{i}(t)\right\}=X_{i}(F), i=1,2$.
Relationship between DTFT and CTFT frequency variables in Hz: $\omega=2 \pi \frac{F}{F_{s}}$, where $F_{s}=\frac{1}{T_{s}}$ is the sampling rate in Hz

Prob. 1(a) Consider the continuous-time signal $x_{0}(t)$ below. A discrete-time signal is created by sampling $x_{0}(t)$ according to $x_{0}[n]=x_{0}\left(n T_{s}\right)$ with $F_{s}=\frac{1}{T_{s}}=\frac{8}{3} W$. Plot the magnitude of the DTFT of $x_{0}[n],\left|X_{0}(\omega)\right|$, over $-\pi<\omega<\pi$. Show all work.

$$
x_{0}(t)=T_{s} \frac{\sin (2 \pi W t)}{\pi t}
$$

1(b) Consider the continuous-time signal $x_{1}(t)$ below. A discrete-time signal is created by sampling $x_{1}(t)$ according to $x_{1}[n]=x_{1}\left(n T_{s}\right)$ with $F_{s}=\frac{1}{T_{s}}=\frac{8}{3} W$. Plot the magnitude of the DTFT of $x_{1}[n],\left|X_{1}(\omega)\right|$, over $-\pi<\omega<\pi$. Show all work.

$$
x_{1}(t)=T_{s} \frac{1}{2}\left\{\frac{\sin (2 \pi W t)}{\pi t}+\frac{\sin \left(2 \pi \frac{W}{3} t\right)}{\pi t}\right\}
$$

1(c) Consider the continuous-time signal $x_{2}(t)$ below. A discrete-time signal is created by sampling $x_{2}(t)$ according to $x_{2}[n]=x_{2}\left(n T_{s}\right)$ with $F_{s}=\frac{1}{T_{s}}=4 W$. Plot the magnitude of the DTFT of $x_{2}[n],\left|X_{2}(\omega)\right|$, over $-\pi<\omega<\pi$. Show all work.

$$
x_{2}(t)=T_{s}\left\{\frac{\sin (2 \pi W t)}{\pi t}+\frac{\sin \left(2 \pi \frac{W}{3} t\right)}{\pi t}\right\} \cos (2 \pi W t)
$$

1(d) Consider the continuous-time signal $x_{3}(t)$ below. A discrete-time signal is created by sampling $x_{3}(t)$ according to $x_{3}[n]=x_{3}\left(n T_{s}\right)$ with $F_{s}=\frac{1}{T_{s}}=4 W$. Plot the magnitude of the DTFT of $x_{3}[n],\left|X_{3}(\omega)\right|$, over $-\pi<\omega<\pi$. Show all work.

$$
x_{3}(t)=T_{s} \frac{2}{W}\left\{\frac{\sin \left(2 \pi \frac{W}{2} t\right)}{\pi t}\right\}^{2} \cos (2 \pi W t)
$$

Figure 1.
Problem 2. This problem is about digital subbanding of the four DT signals $x_{i}[n], i=$ $0,1,2,3$ from Problem 1. Digital subbanding of these four signals is effected in the efficient way via filter bank in Figure 1. All of the quantities in Figure 1 are defined below: the respective impulse responses of the polyphase component filters are defined in terms of the ideal lowpass filter impulse response below.

$$
\begin{equation*}
h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n} \tag{1}
\end{equation*}
$$

The polyphase component filters on the left side of Figure 1 are defined as

$$
\begin{equation*}
h_{\ell}^{+}[n]=h_{L P}[4 n+\ell], \quad \ell=0,1,2,3 . \tag{2}
\end{equation*}
$$

The respective signals at the inputs to these filters are formed from the input signals as
$\left[\begin{array}{l}y_{0}[n] \\ y_{1}[n] \\ y_{2}[n] \\ y_{3}[n]\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ e^{-j \frac{2 \pi}{4}} & 1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{4 \pi}{4}} \\ e^{-j \frac{2 \pi(2)}{4}} & 1 & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{4 \pi(2)}{4}} \\ e^{-j \frac{2 \pi(3)}{4}} & 1 & e^{j \frac{2 \pi(3)}{4}} & e^{j \frac{4 \pi(3)}{4}}\end{array}\right]\left[\begin{array}{c}x_{0}[n] \\ x_{1}[n] \\ x_{2}[n] \\ x_{3}[n]\end{array}\right] \Rightarrow \mathbf{A}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ e^{-j \frac{2 \pi}{4}} & 1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{4 \pi}{4}} \\ e^{-j \frac{2 \pi(2)}{4}} & 1 & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{4 \pi(2)}{4}} \\ e^{-j \frac{2 \pi(3)}{4}} & 1 & e^{j \frac{2 \pi(3)}{4}} & e^{j \frac{4 \pi(3)}{4}}\end{array}\right]$
The polyphase component filters on the right side of Figure 1 are defined as

$$
\begin{equation*}
h_{\ell}^{-}[n]=h_{L P}[4 n-\ell], \quad \ell=0,1,2,3 . \tag{4}
\end{equation*}
$$

The final output signals (on the far right side of Figure 1) are formed from linear combinations of the outputs of these filters via the matrix transformation below.
$\left[\begin{array}{l}z_{0}[n] \\ z_{1}[n] \\ z_{2}[n] \\ z_{3}[n]\end{array}\right]=\left[\begin{array}{cccc}1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{2 \pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j \frac{2 \pi}{4}} & e^{-j \frac{2 \pi(2)}{4}} & e^{-j \frac{2 \pi(3)}{4}} \\ 1 & e^{-j \frac{4 \pi}{4}} & e^{-j \frac{4 \pi(2)}{4}} & e^{-j \frac{4 \pi(3)}{4}}\end{array}\right]\left[\begin{array}{c}s_{0}[n] \\ s_{1}[n] \\ s_{2}[n] \\ s_{3}[n]\end{array}\right] \Rightarrow \mathbf{B}=\left[\begin{array}{cccc}1 & e^{j \frac{2 \pi}{4}} & e^{j \frac{2 \pi(2)}{4}} & e^{j \frac{2 \pi(3)}{4}} \\ 1 & 1 & 1 & 1 \\ 1 & e^{-j \frac{2 \pi}{4}} & e^{-j \frac{2 \pi(2)}{4}} & e^{-j \frac{2 \pi(3)}{4}} \\ 1 & e^{-j \frac{4 \pi}{4}} & e^{-j \frac{4 \pi(2)}{4}} & e^{-j \frac{4 \pi(3)}{4}}\end{array}\right]$

Problem 2, part (a). Show all work. For all parts of this problem, $h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}$.
(a) (i) Determine and write a simplified expression for the DTFT, $H_{3}^{-}(\omega)$, of $h_{3}^{-}[n]=$ $h_{L P}[4 n-3]$ that holds for $-\pi<\omega<\pi$. Simplify as much as possible.
(ii) Plot the magnitude of $H_{3}^{-}(\omega)$ over $-\pi<\omega<\pi$.
(iii) Plot the phase $\angle H_{3}^{-}(\omega)$ over $-\pi<\omega<\pi$.

2(b) Express the output of the filter $h_{2}^{+}[n]=h_{L P}[4 n+2]$ in terms of sampled and timeshifted versions of the original analog input signals $x_{0}(t), x_{1}(t), x_{2}(t)$, and $x_{3}(t)$.
You don't need to write out the expressions for $x_{0}(t), x_{1}(t), x_{2}(t)$, and $x_{3}(t)$. Also, just carry T_{s} along as a variable. You don't have to do a lot of work here; explain answer.

2(c) The output of the filter $h_{1}^{-}[n]=h_{L P}[4 n-1]$ is denoted $s_{1}[n]$ in the block diagram. Express $s_{1}[n]$ in terms of sampled and possibly time-shifted versions of the original analog input signals $x_{0}(t), x_{1}(t), x_{2}(t)$, and $x_{3}(t)$. You don't need to write out the expressions for $x_{0}(t), x_{1}(t), x_{2}(t)$, and $x_{3}(t)$. Also, just carry T_{s} along as a variable. You don't have to do a lot of work here; briefly explain your answer.

2(d) Plot the magnitude of the DTFT, $Y(\omega)$, of the interleaved signal $y[n]$. Carefully label and graph the plot, clearly demarcating the subbands and showing which signal is in each subband.

2(e) Determine the convolution of $h_{2}^{+}[n]=h_{L P}[4 n+2]$ with itself $h_{2}^{+}[n]=h_{L P}[4 n+2]$, where $h_{L P}[n]=4 \frac{\sin \left(\frac{\pi}{4} n\right)}{\pi n}$. Simplify your answer for

$$
g[n]=h_{2}^{+}[n] * h_{2}^{+}[n]=h_{L P}[4 n+2] * h_{L P}[4 n+2]=?
$$

as much as possible. Plot the phase, $\angle G(\omega)$, of the DTFT of $g[n]=h_{2}^{+}[n] * h_{2}^{+}[n]$. This problem is most easily solved via frequency domain analysis. You must show and explain your work.

2(f) It is easy to show that $\mathbf{A B}=4 \mathbf{I}$ and $\mathbf{B A}=4 \mathbf{I}$, where \mathbf{I} is the 4 x 4 identity Matrix. Plot the magnitude, $\left|Z_{1}(\omega)\right|$, of the DTFT of the output $z_{1}[n]$, over $-\pi<\omega<\pi$.

Figure 2.
2(g) Consider the system depicted in Figure 2 above. The 4 x 4 matrices \mathbf{A} and \mathbf{B} are as defined previously for the system in Figure 1, but there are some modifications relative to the filters on the right hand side. The output of the filter $h_{3}^{+}[n]=h_{L P}[4 n+3]$ on the right hand side is denoted $s_{1}[n]$ in the block diagram. Express $s_{1}[n]$ in terms of sampled and possibly time-shifted versions of the original analog input signals $x_{0}(t)$, $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$. (Part (h) on the next and final page, and refers to Fig 2. above.)

2(h) It is easy to show that $\mathbf{A B}=4 \mathbf{I}$ and $\mathbf{B A}=4 \mathbf{I}$, where \mathbf{I} is the 4 x 4 identity Matrix. For EACH output in Figure 2, express the output $z_{k}[n]$, in terms of $x_{0}[n], x_{1}[n], x_{2}[n]$, and $x_{3}[n]$, for $k=0,1,2,3$. Explain your answers.

